dp定义为i层j个蛋至少扔的次数
确定i层j个蛋的情况,我们首先扔一个蛋,在哪扔不确定,设为x :x[1:i]
x层扔出去会有两种情况
- 碎了 剩下dp[x-1][j-1]次 就能确定了
- 没碎 剩下dp[i-x][j]次 就能确定了
因为题目问的是最坏的情况下,所以我们选择他两大的情况
min(dp[i][j], max(dp[x-1][j-1], dp[i-x][j])+1)最外面取min的原因是max里的dp可能出界导致初始值改变取成最大值了
def superEggDrop(self, k, n):
"""
:type k: int
:type n: int
:rtype: int
"""
#dp定义为i层j个蛋至少扔的次数
#base case dp[1][j] = 1, dp[i][1]= i
#转移方程
dp = [[0x3f3f3f3f]*(k+1) for i in range(n+1)]
for i in range(1,n+1):
dp[i][1] = i
for j in range(1,k+1):
dp[1][k] = 1
for i in range(1, n + 1):
for j in range(1, k + 1):
dp[i][j] = i
for i in range(2,n+1):
for j in range(2,k+1):
for x in range(1,i+1):
dp[i][j] =min(dp[i][j], max(dp[x-1][j-1], dp[i-x][j])+1) #dp[x][j-1]碎了,dp[i-x][j]没碎
return dp[n][k]
def superEggDrop(self, k, n):
"""
:type k: int
:type n: int
:rtype: int
"""
#dp定义为i层j个蛋至少扔的次数
#base case dp[1][j] = 1, dp[i][1]= i
#转移方程
dp = [[0]*(k+1) for i in range(n+1)]
for j in range(1,k+1):
dp[1][k] = 1
for i in range(1, n + 1): #所有楼层都不会试超过自己高度的次数
for j in range(1, k + 1):
dp[i][j] = i
for i in range(2,n+1):
for j in range(2,k+1):
left, right = 1, i
while left < right:
mid = left + (right - left) // 2
if dp[mid - 1][j - 1] < dp[i - mid][j]:
left = mid + 1
else:
right = mid
dp[i][j] = max(dp[left - 1][j - 1], dp[i - left][j]) + 1
return dp[n][k]