leetcode312. 戳气球

经典区间DP问题:
区间dp常见的转移方程如下:
dp(i,j) = min{dp(i,k) + dp(k,j)} + w(i,j) (i < k < j)
其中dp(i,j)表示在区间(i,j)上的最优值,w(i,j)表示在转移时需要额外付出的代价,min也可以是max。
指在一段区间上进行动态规划,一般做法是由长度较小的区间往长度较大的区间进行递推,最终得到整个区间的答案
注意在做推导时可以画图看一下状态转移的方向,如何根据base case得到答案
并且注意目标值位置和需要推导的区间
dp table

def maxCoins(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        #dp定义戳破i,j之间所有气球可获得的分数
        #base case i=j的时候为0
        #区间dp的思路:反向思考,假如最后戳破的是k就是nums[i]*nums[k]*nums[j]
        #注意这样转移的原因是开区间
        n = len(nums)
        nums = [1] + nums + [1]
        dp = [[0]*(n+2) for i in range(n+2)]

        for i in range(n,-1,-1):
            for j in range(i+1,n+2):
                for k in range(i+1,j):
                    dp[i][j] =max(dp[i][j], dp[i][k] + nums[i]*nums[k]*nums[j] + dp[k][j])
        return dp[0][n+1]

回顾回溯

 def maxCoins(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        nums.append(1)
        nums.insert(0, 1)
        self.res = 0
        def backtrack(nums, socre):
            if len(nums) == 2:
                self.res = max(self.res, socre)

            for i in range(1, len(nums) - 1):
                point = nums[i - 1] * nums[i] * nums[i + 1]
                i, j = i, nums[i]
                nums.pop(i)
                backtrack(nums, socre + point)
                nums.insert(i, j)

        backtrack(nums, 0)
        return self.res
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值