经典区间DP问题:
区间dp常见的转移方程如下:
dp(i,j) = min{dp(i,k) + dp(k,j)} + w(i,j) (i < k < j)
其中dp(i,j)表示在区间(i,j)上的最优值,w(i,j)表示在转移时需要额外付出的代价,min也可以是max。
指在一段区间上进行动态规划,一般做法是由长度较小的区间往长度较大的区间进行递推,最终得到整个区间的答案
注意在做推导时可以画图看一下状态转移的方向,如何根据base case得到答案
并且注意目标值位置和需要推导的区间
def maxCoins(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
#dp定义戳破i,j之间所有气球可获得的分数
#base case i=j的时候为0
#区间dp的思路:反向思考,假如最后戳破的是k就是nums[i]*nums[k]*nums[j]
#注意这样转移的原因是开区间
n = len(nums)
nums = [1] + nums + [1]
dp = [[0]*(n+2) for i in range(n+2)]
for i in range(n,-1,-1):
for j in range(i+1,n+2):
for k in range(i+1,j):
dp[i][j] =max(dp[i][j], dp[i][k] + nums[i]*nums[k]*nums[j] + dp[k][j])
return dp[0][n+1]
回顾回溯
def maxCoins(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
nums.append(1)
nums.insert(0, 1)
self.res = 0
def backtrack(nums, socre):
if len(nums) == 2:
self.res = max(self.res, socre)
for i in range(1, len(nums) - 1):
point = nums[i - 1] * nums[i] * nums[i + 1]
i, j = i, nums[i]
nums.pop(i)
backtrack(nums, socre + point)
nums.insert(i, j)
backtrack(nums, 0)
return self.res