kafka如何避免消费组重平衡

目录

前言:

协调者

重平衡的影响

避免重平衡 

重平衡发生的场景

参考资料 


前言:

Rebalance 就是让一个 Consumer Group 下所有的 Consumer 实例就如何消费订阅主题的所有分区达成共识的过程。在 Rebalance 过程中,所有 Consumer 实例共同参与,在协调者组件的帮助下,完成订阅主题分区的分配。但是,在整个过程中,所有实例都不能消费任何消息,因此它对 Consumer 的 TPS 影响很大。

消费组Group进行重平衡的条件有三个:

  • 组成员数发生变更。比如有新的 Consumer 实例加入组或者离开组,抑或是有 Consumer 实例崩溃被“踢出”组。订阅主题数发生变更。
  • Consumer Group 可以使用正则表达式的方式订阅主题,比如 consumer.subscribe(Pattern.compile("t.*c")) 就表明该 Group 订阅所有以字母 t 开头、字母 c 结尾的主题。在 Consumer Group 的运行过程中,你新创建了一个满足这样条件的主题,那么该 Group 就会发生 Rebalance。
  • 订阅主题的分区数发生变更。Kafka 当前只能允许增加一个主题的分区数。当分区数增加时,就会触发订阅该主题的所有 Group 开启 Rebalance。

那我们该如何避免消费组进行重平衡勒? 


协调者

所谓协调者,在 Kafka 中对应的术语是 Coordinator,它专门为 Consumer Group 服务,负责为 Group 执行 Rebalance 以及提供位移管理和组成员管理等。 

Consumer 端应用程序在提交位移时,其实是向 Coordinator 所在的 Broker 提交位移。同样地,当 Consumer 应用启动时,也是向 Coordinator 所在的 Broker 发送各种请求,然后由 Coordinator 负责执行消费者组的注册、成员管理记录等元数据管理操作。

所有 Broker 在启动时,都会创建和开启相应的 Coordinator 组件。也就是说,所有 Broker 都有各自的 Coordinator 组件。

重平衡的影响

 发生重平衡时,会造成如下3点不良影响

  • Rebalance 影响 Consumer 端 TPS。这个之前也反复提到了,这里就不再具体讲了。总之就是,在 Rebalance 期间,Consumer 会停下手头的事情,什么也干不了。
  • Rebalance 很慢。如果你的 Group 下成员很多,就一定会有这样的痛点。还记得我曾经举过的那个国外用户的例子吧?他的 Group 下有几百个 Consumer 实例,Rebalance 一次要几个小时。在那种场景下,Consumer Group 的 Rebalance 已经完全失控了。
  • Rebalance 效率不高。当前 Kafka 的设计机制决定了每次 Rebalance 时,Group 下的所有成员都要参与进来,而且通常不会考虑局部性原理,但局部性原理对提升系统性能是特别重要的。

 在默认情况下,每次 Rebalance 时,之前的分配方案都不会被保留。全部打散重新进行分配,并不会保持之前的分配方案,不会实现分区分配的最小改动。

避免重平衡 

对于重平衡慢的问题,kafka目前没有很好的解决方案,我们没办法解决 Rebalance 过程中的各种问题,我们只能尽可能的的去避免 Rebalance 吧,特别是那些不必要的 Rebalance。

在真实的业务场景中,很多 Rebalance 都是计划外的或者说是不必要的。我们应用的 TPS 大多是被这类 Rebalance 拖慢的,因此避免这类 Rebalance 就显得很有必要了。

 要避免 Rebalance,还是要从 Rebalance 发生的时机入手。我们在前面说过,Rebalance 发生的时机有三个:

  • 组成员数量发生变化
  • 订阅主题数量发生变化
  • 订阅主题的分区数发生变化

后面两个通常都是运维的主动操作,所以它们引发的 Rebalance 大都是不可避免的。接下来,我们主要说说因为组成员数量变化而引发的 Rebalance 该如何避免。 

 如果 Consumer Group 下的 Consumer 实例数量发生变化,就一定会引发 Rebalance。这是 Rebalance 发生的最常见的原因。

当我们启动一个配置有相同 group.id 值的 Consumer 程序时,实际上就向这个 Group 添加了一个新的 Consumer 实例。此时,Coordinator 会接纳这个新实例,将其加入到组中,并重新分配分区。通常来说,增加 Consumer 实例的操作都是计划内的,可能是出于增加 TPS 或提高伸缩性的需要。总之,它不属于我们要规避的那类“不必要 Rebalance”。

我们更在意的是 Group 下实例数减少这件事。如果你就是要停掉某些 Consumer 实例,关键是在某些情况下,Consumer 实例会被 Coordinator 错误地认为“已停止”从而被“踢出”Group。如果是这个原因导致的 Rebalance,我们就不能不管了。

当 Consumer Group 完成 Rebalance 之后,每个 Consumer 实例都会定期地向 Coordinator 发送心跳请求,表明它还存活着。如果某个 Consumer 实例不能及时地发送这些心跳请求,Coordinator 就会认为该 Consumer 已经“死”了,从而将其从 Group 中移除,然后开启新一轮 Rebalance。

 Consumer 端有个参数,叫 session.timeout.ms,就是被用来表征此事的。该参数的默认值是 10 秒,即如果 Coordinator 在 10 秒之内没有收到 Group 下某 Consumer 实例的心跳,它就会认为这个 Consumer 实例已经挂了。可以这么说,session.timeout.ms 决定了 Consumer 存活性的时间间隔。

Consumer 还提供了一个允许你控制发送心跳请求频率的参数,就是 heartbeat.interval.ms。这个值设置得越小,Consumer 实例发送心跳请求的频率就越高。频繁地发送心跳请求会额外消耗带宽资源,但好处是能够更加快速地知晓当前是否开启 Rebalance,因为,目前 Coordinator 通知各个 Consumer 实例开启 Rebalance 的方法,就是将 REBALANCE_NEEDED 标志封装进心跳请求的响应体中。

Consumer 端还有一个参数,用于控制 Consumer 实际消费能力对 Rebalance 的影响,即 max.poll.interval.ms 参数。它限定了 Consumer 端应用程序两次调用 poll 方法的最大时间间隔。它的默认值是 5 分钟,表示你的 Consumer 程序如果在 5 分钟之内无法消费完 poll 方法返回的消息,那么 Consumer 会主动发起“离开组”的请求,Coordinator 也会开启新一轮 Rebalance。

重平衡发生的场景

 第一类非必要 Rebalance 是因为未能及时发送心跳,导致 Consumer 被“踢出”Group 而引发的。因此,你需要仔细地设置 session.timeout.ms 和 heartbeat.interval.ms 的值。

  • 设置 session.timeout.ms = 6s。
  • 设置 heartbeat.interval.ms = 2s。
  • 要保证 Consumer 实例在被判定为“dead”之前,能够发送至少 3 轮的心跳请求,即 session.timeout.ms >= 3 * heartbeat.interval.ms。

第二类非必要 Rebalance 是 Consumer 消费时间过长导致的 

max.poll.interval.ms 参数值的设置显得尤为关键。如果要避免非预期的 Rebalance,你最好将该参数值设置得大一点,比你的下游最大处理时间稍长一点。 

如果你按照上面的推荐数值恰当地设置了这几个参数,却发现还是出现了 Rebalance,建议你去排查一下 Consumer 端的 GC 表现,比如是否出现了频繁的 Full GC 导致的长时间停顿,从而引发了 Rebalance。

参考资料 

 17 | 消费者组重平衡能避免吗?-极客时间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值