逻辑回归

一、什么是逻辑回归?

  • 逻辑回归假设样本服从伯努利分布,利用极大似然估计,运用梯度下降法进行求解,从而达到将样本二分类的目的。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 求导得minJ(θ)
    在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
def sigmoid(t):
    return 1/(1+np.exp(-t))

x = np.linspace(-10,10,500)
y = sigmoid(x)

plt.plot(x,y)
plt.show()

在这里插入图片描述

二、决策边界

import numpy as np
from sklearn.metrics import accuracy_score

class LogitsicRegression:

    def __init__(self):
        """初始化Logistic Regression模型"""
        self.coef_ = None
        self.intercept_ = None
        self._theta = None
        
    def _sigmoid(t):
        return 1/(1+np.exp(-t))

    def fit_gd(self, X_train, y_train, eta=0.01, n_iters=1e4):
        """根据训练数据集X_train,y_train,使用梯度下降法训练Logistic Regression模型"""
        assert X_train.shape[0] == y_train.shape[0], \
            "the size of X_train must be equal to the size of y_train"

        def J(theta, X_b, y):
            y_hat = self._sigmoid(X_b.dot(theta))
            return -np.sum((y*np.log(y_hat)+ (1-y)*np.log(1-y_hat)) / len(y)


        def dJ(theta, X_b, y):
            # res = np.empty(len(theta))
            # res[0] = np.sum(X_b.dot(theta) - y)
            # for i in range(1, len(theta)):
            #     res[i] = (X_b.dot(theta) - y).dot(X_b[:, i])
            # return res * 2 / len(X_b)
            return X_b.T.dot(self._sigmoid(X_b.dot(theta)) - y) / len(X_b)

        def gradient_descent(X_b, y, initial_theta, eta, n_iters=1e4, epsilon=1e-8):
            

            theta = initial_theta
            cur_iter = 0

            while cur_iter < n_iters:
                gradient = dJ(theta, X_b, y)
                last_theta = theta
                theta = theta - eta * gradient
                if (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) < epsilon):
                    break

                cur_iter += 1

            return theta

        X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
        initial_theta = np.zeros(X_b.shape[1])
        self._theta = gradient_descent(X_b, y_train, initial_theta, eta, n_iters)

        self.intercept_ = self._theta[0]
        self.coef_ = self._theta[1:]

        return self


        X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
        initial_theta = np.random.randn(X_b.shape[1])
        self._theta = sgd(X_b, y_train, initial_theta, n_iters, t0, t1)

        self.intercept_ = self._theta[0]
        self.coef_ = self._theta[1:]

        return self

    def predict_proba(self, X_predict):
        """给定待预测数据集X_predict,返回表示X_predict的结果概率向量"""
        assert self.intercept_ is not None and self.coef_ is not None, \
            "must fit before predict!"
        assert X_predict.shape[1] == len(self.coef_), \
            "the feature number of X_predict must be equal to X_train"

        X_b = np.hstack([np.ones((len(X_predict), 1)), X_predict])
        return self._sigmoid(X_b.dot(self._theta))
     
                               
    def predict(self, X_predict):
        """给定待预测数据集X_predict,返回表示X_predict的结果概率向量"""
        assert self.intercept_ is not None and self.coef_ is not None, \
            "must fit before predict!"
        assert X_predict.shape[1] == len(self.coef_), \
            "the feature number of X_predict must be equal to X_train"
        proba = self.predict_proba(X_predict)
        return np.array(proba>=0.5,dtype='int')
                               
                               
    def score(self, X_test, y_test):
        """根据测试数据集 X_test 和 y_test 确定当前模型的准确度"""

        y_predict = self.predict(X_test)
        return accuracy_score(y_test, y_predict)

    def __repr__(self):
        return "LogisticRegression()"

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets

iris = datasets.load_iris()
X = iris.data
y = iris.target
X = X[y<2,:2]
y = y[y<2]

在这里插入图片描述

plt.scatter(X[y==0,0],X[y==0,1],color = 'red')
plt.scatter(X[y==1,0],X[y==1,1],color = 'blue')
plt.show()

在这里插入图片描述

from sklearn.model_selection import train_test_split

X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=666)

from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression()
log_reg.fit(X_train,y_train)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

def x2(x1):
    return ((-log_reg.coef_[0])* x1 - log_reg.intercept_[0]) /log_reg.coef_[1]
  • 不知道啥问题,运行不了该函数
x1_plot = np.linspace(4,8,1000)
x2_plot = x2(x1_plot)

plt.scatter(X[y==0,0],X[y==0,1],color = 'red')
plt.scatter(X[y==1,0],X[y==1,1],color = 'blue')
plt.plot(x1_plot,x2_plot)
plt.show()

在这里插入图片描述

plt.scatter(X_test[y_test==0,0],X_test[y_test==0,1],color = 'red')
plt.scatter(X_test[y_test==1,0],X_test[y_test==1,1],color = 'blue')
plt.plot(x1_plot,x2_plot)
plt.show()

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

三、多项式中的逻辑回归

import numpy as np
import matplotlib.pyplot as plt
np.random.seed(666)
X = np.random.normal(0,1,size=(200,2))
y = np.array(X[:,0]**2+ X[:,1]**2 <1.5,dtype='int')

在这里插入图片描述

plt.scatter(X[y==0,0],X[y==0,1])
plt.scatter(X[y==1,0],X[y==1,1])
plt.show()

在这里插入图片描述

from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression()
log_reg.fit(X,y)

在这里插入图片描述

log_reg.score(X,y)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

  • 使用逻辑回归
from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression()
log_reg.fit(X,y)

在这里插入图片描述

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures,StandardScaler

def PolynomialFeaturesLogisticRegression(degree):
    return Pipeline([
        ('poly',PolynomialFeatures(degree= degree)),
        ('std_scaler',StandardScaler()),
        ('log_reg',LogisticRegression())
    ])

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

  • degree=20
    在这里插入图片描述
    在这里插入图片描述

四、逻辑回归中使用正则化

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt

np.random.seed(666)
X = np.random.normal(0,1,size=(200,2))
y = np.array(X[:,0]**2+X[:,1]<1.5,dtype='int')
for _ in range(20):
    y[np.random.randint(200)] = 1
plt.scatter(X[y==0,0],X[y==0,1])
plt.scatter(X[y==1,0],X[y==1,1])
plt.show()

在这里插入图片描述

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=666)
from sklearn.linear_model import LogisticRegression

log_reg = LogisticRegression()
log_reg.fit(X_train,y_train)

# l2正则化

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

from sklearn.preprocessing import PolynomialFeatures,StandardScaler
from sklearn.pipeline import Pipeline

def PolynomialFeaturesLr(degree):
    return Pipeline([
        ('poly',PolynomialFeatures(degree=degree)),
        ('std_scaler',StandardScaler()),
        ('log_reg',LogisticRegression())
    ])
poly_log_reg = PolynomialFeaturesLr(degree = 2)
poly_log_reg.fit(X_train,y_train)

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

4.1 使用C正则化?

def PolynomialFeaturesLrr(degree,C):
    return Pipeline([
        ('poly',PolynomialFeatures(degree=degree)),
        ('std_scaler',StandardScaler()),
        ('log_reg',LogisticRegression(C=C))
    ])
poly_log_reg3 = PolynomialFeaturesLrr(degree=20,C=0.1)
poly_log_reg3.fit(X_train,y_train)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

4.2 加入正则化

def PolynomialFeaturesLrrr(degree,C,penalty = 'l2'):
    return Pipeline([
        ('poly',PolynomialFeatures(degree=degree)),
        ('std_scaler',StandardScaler()),
        ('log_reg',LogisticRegression(C=C,penalty=penalty))
    ])
poly_log_reg4 = PolynomialFeaturesLrrr(degree=20,C=0.1,penalty='l1')
poly_log_reg4.fit(X_train,y_train)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

五、逻辑回归解决多分类问题

  • OVR
  • OVO
  • MVM
    西瓜书上有介绍

5.1 OVR

  • 计算的复杂度提升了

在这里插入图片描述

5.2 OVO

在这里插入图片描述
在这里插入图片描述

每次只用真实的两个类别进行比较

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets

iris = datasets.load_iris()
X = iris.data[:,:2]
y = iris.target
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=666)
 
log_reg = LogisticRegression()
log_reg.fit(X_train,y_train)

在这里插入图片描述

以前版本,multi_class=‘ovr’
在这里插入图片描述

在这里插入图片描述

  • 绘制决策边界
    在这里插入图片描述
    绘制决策边界代码
def plot_decision_boundary(model, axis):
	# meshgrid函数用两个坐标轴上的点在平面上画格,返回坐标矩阵
	X0, X1 = np.meshgrid(
		# 随机两组数,起始值和密度由坐标轴的起始值决定
		np.linspace(axis[0], axis[1], int((axis[1] - axis[0]) * 100)).reshape(-1, 1),
		np.linspace(axis[2], axis[3], int((axis[3] - axis[2]) * 100)).reshape(-1, 1),
	)
	# ravel()方法将高维数组降为一维数组,c_[]将两个数组以列的形式拼接起来,形成矩阵
	X_grid_matrix = np.c_[X0.ravel(), X1.ravel()]
	
	# 通过训练好的逻辑回归模型,预测平面上这些点的分类
	y_predict = model.predict(X_grid_matrix)
	y_predict_matrix = y_predict.reshape(X0.shape)
	
	# 设置色彩表
	from matplotlib.colors import ListedColormap
	my_colormap = ListedColormap(['#0000CD', '#40E0D0', '#FFFF00'])
	
	# 绘制等高线,并且填充等高区域的颜色
	plt.contourf(X0, X1, y_predict_matrix, linewidth=5, cmap=my_colormap)

在这里插入图片描述

== OVO==

log_reg2 = LogisticRegression(multi_class='multinomial',solver='newton-cg')
log_reg2.fit(X_train,y_train)
log_reg2.score(X_test,y_test)

在这里插入图片描述

  • 使用全部数据
iris = datasets.load_iris()
X = iris.data
y = iris.target

X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=666)

log_reg = LogisticRegression()
log_reg.fit(X_train,y_train)
log_reg.score(X_train,y_train)

在这里插入图片描述

log_reg2 = LogisticRegression(multi_class='multinomial',solver='newton-cg')
log_reg2.fit(X_train,y_train)
log_reg2.score(X_train,y_train)

在这里插入图片描述
在这里插入图片描述

5.3 对所有的二分类器进行多分类任务

from sklearn.multiclass import OneVsOneClassifier,OneVsRestClassifier
ovr = OneVsRestClassifier(log_reg)
ovr.fit(X_train,y_train)
ovr.score(X_test,y_test)

在这里插入图片描述

ovo = OneVsOneClassifier(log_reg)
ovo.fit(X_train,y_train)
ovo.score(X_test,y_test)

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值