标题: 马虎的算式
小明是个急性子,上小学的时候经常把老师写在黑板上的题目抄错了。
有一次,老师出的题目是:36 x 495 = ?
他却给抄成了:396 x 45 = ?
但结果却很戏剧性,他的答案竟然是对的!!
因为 36 * 495 = 396 * 45 = 17820
类似这样的巧合情况可能还有很多,比如:27 * 594 = 297 * 54
假设 a b c d e 代表1~9不同的5个数字(注意是各不相同的数字,且不含0)
能满足形如: ab * cde = adb * ce 这样的算式一共有多少种呢?
请你利用计算机的优势寻找所有的可能,并回答不同算式的种类数。
满足乘法交换律的算式计为不同的种类,所以答案肯定是个偶数。
答案直接通过浏览器提交。
注意:只提交一个表示最终统计种类数的数字,不要提交解答过程或其它多余的内容。
解题思路
1,使用递归5个for循环就可以解决!
2,利用for循环赋值给abcde,然后再赋值的同时需要判断互不相等的情况!
代码如下:
#include<stdio.h>
int main(void)
{
int a, b, c, d, e;
int ans = 0;
for ( a = 1; a < 10; ++a){
for ( b = 1; b <10; ++b){
if (a != b){
for ( c = 1; c < 10; ++c){
if (c !=a && c != b){
for ( d = 1; d <10; ++d){
if (d !=a&& d !=b&& d !=c){
for ( e = 1; e < 10; ++e){
if (e !=a&& e !=b && e != c&& e != d){
if ((a * 10 + b) * (c * 100 + d * 10 + e) == (a * 100 + d * 10 + b) * (c * 10 + e)){
ans++;
}
}
}
}
}
}
}
}
}
}
printf("%d",ans);
return 0;
}
注意:
1,循环是从1开始,所以每个元素的初始值均为1;
2,ans必须要给定初始值!
3,写循环的同时需要注意在何处需要进行判断不相等的条件!