从填空到生成:GLM的预训练新视界

论文题目:GLM: General Language Model Pretraining with Autoregressive Blank Infilling

论文地址:https://arxiv.org/pdf/2103.10360

今天分享一篇论文GLM,2022年由清华大学、智源研究院、MIT等机构发表在国际会议上。其创新点在于提出了一种通用的预训练框架,利用自回归填空填充目标统一不同任务的预训练目标,并引入混合注意力掩码和2D位置编码,以提升自然语言理解和生成的性能。

如今如火如荼的大模型GLM-x系列都是基于GLM架构提出来的 。

开始论文解读。我会按照论文框架对各部分进行详细阐述。

完整内容,请从下方获取。

更多paper内容:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值