揭秘FlashAttention:提升注意力计算的速度与内存效率

论文题目:FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness

论文地址:https://arxiv.org/pdf/2205.14135

今天分享一篇论文《FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness》,2023年发表在NeurIPS大会上。论文提出了一种高效的注意力计算方法,显著减少了内存访问次数,提升了Transformers模型在处理长序列时的速度和内存效率。通过引入IO感知的策略,FlashAttention不仅优化了标准注意力机制的性能,还在多种模型和任务上展示了更好的效果。

整内容,请关注卫星工众号 大厂小僧

更多paper内容:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值