git安装配置教程(小白保姆教程2024最新版)

本文介绍了Git的基本概念,包括其作为分布式版本控制系统的重要性,以及如何在Windows上下载、安装Git。重点讲解了配置Git本地信息和SSH密钥对的过程,包括生成SSHKey、添加到GitHub账户等步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

一、Git是什么?

Git是目前世界上最先进的分布式版本控制系统,没有之一!说到Git,另一个需要知道的便是GitHub,GitHub是目前使用最多的社交代码托管平台。Git Hub,字面意思就是Git中心枢纽的意思,它是基于Git的,仅支持git 作为唯一的版本库格式进行托管,故名GitHub。

二、安装Git

1.下载git

git官网地址:https://git-scm.com/
选择所需要的版本,进行下载。
但是如果没梯子下载会非常慢,因为服务器在国外。
可以下载下面演示的git安装包:Git-2.42.0.2-64-bit.exe 密码:123
也可在国内镜像网站下载其他版本:https://npm.taobao.org/mirrors/git-for-windows/

2.安装git

双击打开上面已经下好的exe执行文件,选择安装位置,然后都默认下一步直接安装即可。
若想了解安装每一步选择的具体作用可以观看博客:git的安装与配置教程
在这里插入图片描述
在这里插入图片描述

3.检测git

打开控制面板(win+R 输入cmd),输入git --version 查看Git版本信息
在这里插入图片描述

三、配置Git

1.配置本地信息

为了在后面上传项目到github时方便知道是谁上传的,需要给本机git配置用户名和邮箱:

git config --global user.name "Your Name"
git config --global user.email "email@example.com"

打开 git bash(也可任意位置右键打开 git bash):
在这里插入图片描述
查看配置命令:git config --list

2.配置SSH

1)SSH与SSH Key是什么?

要了解SSH key简介,首先得熟悉SSH,Secure Shell (SSH) 是一个允许两台电脑之间通过安全的连接进行数据交换的网络协议。SSH 密钥对可以让您方便的登录到 SSH 服务器,而无需输入密码。SSH 密钥对总是成双出现的,一把公钥,一把私钥。这里用到了非对称公钥加密体系,生成的公钥放到github的网站上,生成的私钥放在自己的电脑上。

2)生成SSH Key

ssh key生成命令

ssh-keygen -t rsa -C “注册邮箱”
//执行后一直回车即可

在这里插入图片描述

3)获取ssh key公钥内容(id_rsa.pub)

cd ~/.ssh
cat id_rsa.pub

如下图所示,复制该内容
在这里插入图片描述

4)Github账号上添加公钥

进入Settings设置
在这里插入图片描述
添加ssh key,把刚才复制的内容粘贴上去保存即可
在这里插入图片描述
在这里插入图片描述

5)验证是否配置成功

ssh -T git@github.com

显示如下信息表明设置成功
在这里插入图片描述

以上参考博客:
Git到底是什么? - 知乎 (zhihu.com)
git和github的关系 - 知乎 (zhihu.com)
Git镜像网址及其下载安装教程_git镜像地址-CSDN博客
对给git配置邮箱和用户名的理解-CSDN博客
Github配置ssh key的步骤(大白话+包含原理解释)-CSDN博客
git的安装与配置教程-超详细版_git安装及配置教程-CSDN博客

### 将 YOLOv8 PyTorch PT 模型转换为 RKNN 格式的步骤 #### 准备工作环境 为了顺利进行模型转换,需先准备好必要的开发环境。确保安装了 Python 和相关依赖库,以及配置好用于编译和优化模型的工具链。 #### 转换为 ONNX 格式 首先需要将原始的 `.pt` 文件导出为中间表示形式——ONNX 模型文件。这一步骤可以通过调用 `export.py` 实现,在命令行输入如下指令完成操作: ```bash python export.py --weights yolov8-pose.pt --include onnx ``` 此命令会读取指定路径下的预训练权重文件并将其保存为目标格式[^2]。 #### 安装 RKNN 工具包 接着要获取 Rockchip 提供的支持 RK3588 平台上的神经网络推理加速 SDK 及其配套工具。通常可以从官方 GitHub 仓库下载最新版本,并按照说明文档中的指导来设置环境变量等必要事项[^4]。 #### 使用 RKNN Toolkit 进行最终转换 当上述准备工作完成后,可以利用 RKNN Toolkit 来处理之前得到的 ONNX 文件。具体做法是在终端执行以下脚本片段: ```bash cd path/to/rknn-toolkit/examples/onnx/yolov5/ python convert_to_rknn.py --model_file ./yolov8-pose.onnx --output_name yolov8_pose.rknn ``` 这段代码将会把给定名称的 ONNX 模型转化为适用于目标硬件平台的 RKNN 版本。 通过以上几个环节的操作即可实现从 YOLOv8 的 PyTorch 训练成果到可以在嵌入式设备上高效运行的形式转变过程[^3]。
评论 29
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

红龙创客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值