import numpy as np
from numpy import pi
import matplotlib.pyplot as plt
from matplotlib.pylab import mpl
mpl.rcParams['font.sans-serif'] = ['SimHei']
mpl.rcParams['font.sans-serif'] = ['SimHei']
sample_rate = 22050 #采样率
time = 5 #波形时间
def wave_bulid(f0,amplitude_xishu = 1):#波形生成
w_oumiga = 2*pi*f0
x = np.linspace(0,time,sample_rate*time)
y = amplitude_xishu*np.cos(w_oumiga*x)
return x,y,f0
def to_fft(data,N=sample_rate*time):#转换为频域数据,并进行取半、归一化等处理
# N=self.nframes #取样点数
df = sample_rate/ (N - 1) #每个点分割的频率 如果你采样频率是4096,你FFT以后频谱是从-2048到+2048hz(4096除以2),然后你的1024个点均匀分布,相当于4个HZ你有一个点,那个复数的模就对应了频谱上的高度
freq = [df * n for n in range(0, N)]
wave_data2 = data[0:N]
fft_int=np.fft.fft(wave_data2)
# print(N, len(data),len(wave_data2))
c = fft_int * 2 / N #*2能量集中化 /N归一化