用Python简单的实现AM调制信号波形的变化

import numpy as np
from numpy import pi
import matplotlib.pyplot as plt
from matplotlib.pylab import mpl
mpl.rcParams['font.sans-serif'] = ['SimHei']
mpl.rcParams['font.sans-serif'] = ['SimHei']
sample_rate = 22050  #采样率
time = 5  #波形时间
def wave_bulid(f0,amplitude_xishu = 1):#波形生成

    w_oumiga = 2*pi*f0
    x = np.linspace(0,time,sample_rate*time)
    y = amplitude_xishu*np.cos(w_oumiga*x)
    return x,y,f0

def to_fft(data,N=sample_rate*time):#转换为频域数据,并进行取半、归一化等处理
    # N=self.nframes #取样点数
    df = sample_rate/ (N - 1)  #每个点分割的频率 如果你采样频率是4096,你FFT以后频谱是从-2048到+2048hz(4096除以2),然后你的1024个点均匀分布,相当于4个HZ你有一个点,那个复数的模就对应了频谱上的高度
    freq = [df * n for n in range(0, N)]

    wave_data2 = data[0:N]
    fft_int=np.fft.fft(wave_data2)
    # print(N, len(data),len(wave_data2))
    c = fft_int * 2 / N  #*2能量集中化  /N归一化
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值