信号处理相关知识(一)


前言

主要记录一下在学习信号处理时设计到的一些知识点


一、傅里叶家族

1、从傅里叶级数到傅里叶变换

傅里叶变换

傅里叶变换的作用:将一个复杂的混合信号,分解为多个正弦波

在这里插入图片描述
表达式中的 e i w t e^{iwt} eiwt就是欧拉公式,代表复数平面的一个圆
B站视频:形象展示傅里叶变换

傅里叶级数

我们都知道泰勒展开是将函数展开成幂指数函数的和,展开的结果就叫泰勒级数(也就是说一个函数可以由多项式拟合形成)。

同理傅里叶展开是将函数展开成三角函数相加的结果例如:y= 1 + sinx +cosx +sin2x + cos2x +…
这样展开后的结果就叫傅里叶级数

傅里叶级数和傅里叶变换的区别

对于一个周期性函数而言,必然是可以用傅里叶展开展开成有限项正余弦函数的和,那么在频域上展示出来就会类似直方图,就像这样:
在这里插入图片描述

当周期越来越大时,函数的周期性越来越弱,需要更多正余弦函数的组合才能表示,当周期趋向于无穷也就是非周期性函数时,频域上的图就合成了一条曲线,这时候就是傅里叶变换。

所以傅里叶级数是周期性变换,傅里叶变换是非周期性变换

为什么要用正弦函数做傅里叶变换

暂时还没看到我能理解的答案(可能和欧拉公式有关,有懂的小伙伴指教一下,感激不尽)

2、拉普拉斯变换

拉普拉斯变换一定程度上弥补了傅里叶变换的不足,可以说是傅里叶变换plus。

傅里叶变换是将原函数拆分成一系列正弦函数的叠加,但是当原函数趋向于无穷时无论用什么正弦波都无法表示。这时候就需要将原函数“拉”下来,这时候就需要给原函数 f(t) 乘上一个衰减因子 e − σ t ( σ > 0 ) e^{-\sigma t} (\sigma>0) eσt(σ>0)。这样就可以对它做傅里叶变换了。那么就得到:

∫ 0 ∞ f ( t ) e − σ t e − i w t d t → ∫ 0 ∞ f ( t ) e − ( i w + σ ) t d t \int_{0}^{\infty } f(t)e^{-\sigma t}e^{-iwt}\mathrm{d}t \to \int_{0}^{\infty } f(t)e^{-(iw+\sigma)t}\mathrm{d}t 0f(t)eσteiwtdt0f(t)e(iw+σ)tdt

这里 − ( i w + σ ) t -(iw+\sigma)t (iw+σ)t就可以看作一个复变量,这里我们用s表示,就得到了拉普拉斯变换的公式(注意这里是对于t≥0函数值不为零的连续时间函数):

X ( s ) = ∫ 0 ∞ f ( t ) e − s t d t X(s) = \int_{0 }^{\infty } f(t)e^{-st}\mathrm{d}t X(s)=0f(t)estdt

傅里叶变换分解后的到正弦波,而拉普拉斯变换,由于原信号趋向无穷大,所以分解后的信号频率保持不变但是振幅不断增大。

为什么衰减因子用 e − σ e^{-\sigma } eσ?因为 f ( t ) = e − σ t f(t) = e^{-\sigma t} f(t)=eσt关于t下降的很快,基本可以容忍大部分函数,将他们“拉”下来

3、离散傅里叶

傅里叶变换本质是将信号从时域转换到频域。
在这里插入图片描述
DTFT:离散时间傅里叶变换(理想抽样信号的傅里叶变换)
DFS:离散傅里叶级数
DFT:离散傅里叶变换

DTFT:对于可和的信号在时域上是离散的,直接应用傅里叶变换公式可以得到连续的频谱(我的理解是这里时域上的离散信号相当于在连续信号上抽样得到的,那么这样它的频域信息应该是不变的)。注意傅里叶变换是针对非周期性函数的。所以对于周期性离散信号要用DFS。

DFS:我的理解是对时域上离散信号的应用傅里叶级数。

DFT:对于周期性离散信号,取出它的一个周期(周期信号不过是在时域上对一个周期内信号的重复)扩展到无限长,相当于将周期性有限离散序列变成了非周期性无限离散序列,这样就可以用DFFT。我认为更易懂的理解是:在DTFT的基础上,对频域再做一次采样,这样频域上也是离散的了,这样方便计算机读取和计算。

二、小波变换

在这里插入图片描述

如上图,最上边的是频率始终不变的平稳信号。而下边两个则是频率随着时间改变的非平稳信号,它们同样包含和最上信号相同频率的四个成分。做FFT后,我们发现这三个时域上有巨大差异的信号,频谱(幅值谱)却非常一致。尤其是下边两个非平稳信号,我们从频谱上无法区分它们,因为它们包含的四个频率的信号的成分确实是一样的,只是出现的先后顺序不同。可见,傅里叶变换处理非平稳信号有天生缺陷。它只能获取一段信号总体上包含哪些频率的成分,但是对各成分出现的时刻并无所知。因此时域相差很大的两个信号,可能频谱图一样。 from:知乎 @咚懂咚懂咚

而自然界中的信号大多是非平稳信号(尤其对生物医学而言),对于这样的非平稳信号,只知道包含哪些频率成分是不够的,我们还想知道各个成分出现的时间。知道信号频率随时间变化的情况,各个时刻的瞬时频率及其幅值——这也就是时频分析

那么如何解决这一问题呢?
首先最简单的想法就是我们可以用类似滑动窗口的方法,先将信号分成一个个小段,那么每一段内就会趋向平稳,在对每段内用傅里叶变换,bingo。这就是短时傅里叶变换,STFT。
但是这一方法缺陷也是明显的,那就是窗口的大小不好把握(实际上感觉滑动窗口都有这个问题)。窗太窄,窗内的信号太短,会导致频率分析不够精准,频率分辨率差。窗太宽,时域上又不够精细,时间分辨率低。

那么进一步的解决方法就是小波变换了。

小波做的改变就在于,将无限长的三角函数基换成了有限长的会衰减的小波基。

在这里插入图片描述

为什么它叫“小波”,因为是很小的一个波嘛~

在这里插入图片描述

从公式可以看出,不同于傅里叶变换,变量只有频率ω,小波变换有两个变量:尺度a(scale)和平移量 τ(translation)。尺度a控制小波函数的伸缩,平移量 τ控制小波函数的平移尺度就对应于频率(反比),平移量 τ就对应于时间
而当我们在每个尺度下都平移着和信号乘过一遍后,我们就知道信号在每个位置都包含哪些频率成分。

小波变换在处理突变信号是也有优势,这里不在赘述。

三、VMD和EMD

1、VMD

VMD是通过迭代搜寻变分模型最优解, 来确定我们所知的模态uk(t)及其对应的中心频率ωk和带宽,将原始信号分解为指定个数的IMF分量。每个模态都是具有中心频率的有限带宽(就是在频域中有在一定的宽度)。所有模态之和为源信号。

一般来说是使用VMD将信号分解与重构,用的最多就是来去噪。

优点:能有效避免模态混叠、过包络、欠包络、边界效应等问题,具有较好的复杂数据分解精度及较好的抗噪声干扰等优点。
缺点:VMD对信号的分解模态数K和惩罚因子a(分解完备性的平衡参数,通过选取参数a可以调节VMD方法的完备性)需要人为选取,选取的值会影响分解的效果。另外对边界效应和突发的信号处理也存在问题。

VMD的具体算法大致如下:

在这里插入图片描述

2、EMD

EMD是一种非平稳信号分析方法,但是它不同于FFT。EMD适合任意数据,基于数据本身来分解,不需要基函数。EMD分解基于这样的假设:①认为信号由不同的IMF组合而成;②IMF同时具备线性和非线性特点;由EMD方法分解信号可以得到一系列的本征模态分量(IMF)

EMD方法可以简述如下:找出时序的所有高点(图中红线)、低点(图中绿线),分别样条插值做包络,取包络平均(自适应的均值,红绿线取平均得到黑线),从原数据中抽离(用原数据减去提取的分量)。

在这里插入图片描述

对剩下的继续抽离包络平均值,直至最高频的波动IMF1被提取出来。如此往复,提取所有IMF,直至没有两个过零点的信号作为残余R。这样获得的每个IMF都是几乎关于0轴对称的,而且,由于是自适应滤波,滤出来的波动常有实际的周期性意义。

EMD的缺陷在于不稳定,究其原因,一是一些讨厌的波动(通常是噪音)会造成模态混淆,二是端点效应(我的理解是极值)直接影响经验模态分析的效果

针对EMD的缺点有人提出了改进EEMD:即在原始信号中加入随机白噪声去除干扰,再EMD最后取集合平均。改进的思路在于,利用白噪声均值为0的特性,通过在分解的过程中多次引入均匀分布的白噪声,将信号本身的噪声通过多次人为添加的噪声掩盖过去,从而得到更加精准的上下包络线。同时对分解结果进行平均处理,平均处理次数越多,噪声给分解带来的影响就越小。

EEMD算法步骤如下:

1.将正态分布的白噪声加到原始信号;

2.将加入白噪声的信号作为一个整体,然后进行EMD分解,得到各IMF分量;

3.重复步骤1和2,每次加入新的正态分布白噪声序列;

4.将每次得到的IMF做集成平均(之前加入的白噪声在这里求和取平均后抵消了)处理后作为最终结果。

四、HHT(希尔伯特黄变换)

上面所说的傅里叶变换和小波变换都是预先假定一些正交的基,然后像上面投影。

希尔伯特黄变换,主要是经验模式分解(EMD,也可以用EEMD)+希尔伯特谱分析两部分,目的是获得信号中具有实际物理意义的瞬时频率分量,进而实现高分辨率的时频分析。
因为希尔伯特变换的前提条件是:窄带信号、非复杂信号,平稳信号,但是生活中存在的大部分信号均不满足该条件,为了使用希尔伯特变换,必须将非线性平稳信号转换为平稳信号,因此,必须使用EMD进行模态的分解。

HHT谱:信号的希尔伯特变换后做FFT,表示信号幅值在整个频率段上随时间和频率的变化规律。HHT谱区别于傅里叶谱的地方,其得到的谱信息既包括时域,又包括频域,傅里叶变换只包括频域,没有对应的时域信息。

在我所学习的领域中,希尔伯特变换的意义在于将一个一维的信号变成了二维复平面上的信号(即既有时域也有频域)

  • 4
    点赞
  • 41
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值