王道机试指南---第六章--6.5矩阵与矩阵快速幂

6.5 矩阵

矩阵加法与乘法

#include<iostream>
#include<cstdio>

using namespace std;
const int MAXN=100; 

struct Matrix{
	int row,col;
	int matrix[MAXN][MAXN];
	Matrix(){}		//构造函数 
	Matrix(int r,int c):row(r),col(c){}
}; 

Matrix Add(Matrix x,Matrix y){
	Matrix answer=Matrix(x.row,x.col);
	for(int i=0;i<answer.row;++i){
		for(int j=0;j<answer.col;++j){
			answer.matrix[i][j]=x.matrix[i][j]+y.matrix[i][j];
		}
	}
	return answer;
}

Matrix Multiply(Matrix x,Matrix y){
	Matrix answer=Matrix(x.row,y.col);
	for(int i=0;i<answer.row;i++){
		for(int j=0;j<answer.col;++j){
			answer.matrix[i][j]=0;
			for(int k=0;k<x.col;++k){
				answer.matrix[i][j]+=x.matrix[i][k]*y.matrix[k][j];
			}
		}
	}
	return answer;
}

void InputMatrix(Matrix &x){
	for(int i=0;i<x.row;++i){
		for(int j=0;j<x.col;++j){
			scanf("%d",&x.matrix[i][j]);
		}
	}
	return;
}

void OutputMatrix(Matrix x){
	for(int i=0;i<x.row;++i){
		for(int j=0;j<x.col;++j){
			printf("%d ",x.matrix[i][j]);
		}
		printf("\n");
	}
	return;
}

int main(){
	Matrix x(2,3);
	Matrix y(3,2);
	InputMatrix(x);
	InputMatrix(y);
	Matrix answer=Multiply(x,y);
	OutputMatrix(answer);
	
	return 0;
}

矩阵转置:原来的行变为现在的列,原来的列变为现在的行
矩阵幂

#include<iostream>
#include<cstdio>

using namespace std;
const int MAXN=100; 

struct Matrix{
	int row,col;
	int matrix[MAXN][MAXN];
	Matrix(){}		//构造函数 
	Matrix(int r,int c):row(r),col(c){}
}; 

//矩阵加法 
Matrix Add(Matrix x,Matrix y){
	Matrix answer=Matrix(x.row,x.col);//矩阵的初始化 
	for(int i=0;i<answer.row;++i){
		for(int j=0;j<answer.col;++j){
			answer.matrix[i][j]=x.matrix[i][j]+y.matrix[i][j];
		}
	}
	return answer;
}

//矩阵乘法 
Matrix Multiply(Matrix x,Matrix y){
	Matrix answer=Matrix(x.row,y.col);
	for(int i=0;i<answer.row;i++){
		for(int j=0;j<answer.col;++j){
			answer.matrix[i][j]=0;
			for(int k=0;k<x.col;++k){
				answer.matrix[i][j]+=x.matrix[i][k]*y.matrix[k][j];
			}
		}
	}
	return answer;
}

//矩阵转置 

Matrix Transpose(Matrix x){
	Matrix answer=Matrix(x.col,x.row);
	for(int i=0;i<x.row;++i){
		for(int j=0;j<x.col;++j){
			answer.matrix[i][j]=x.matrix[j][i];
		}
	}
	return answer;
}

//矩阵求幂(求k次幂)必须保证行和列相等才能求幂
Matrix QuickPower(Matrix x,int n){
	Matrix answer=Matrix(x.row,x.col);
	for(int i=0;i<answer.row;++i){
		for(int j=0;j<answer.col;++j){
			if(i==j){
				answer.matrix[i][j]=1;
			}else{
				answer.matrix[i][j]=0;
			}
		}
	}
	
	while(n!=0){			//快速幂的方法,将n转化为2进制 
		if(n%2==1){
			answer=Multiply(answer,x);		//矩阵相乘 
		}
		n/=2;
		x=Multiply(x,x);
	}
	return answer;
} 
 

//输入矩阵 
void InputMatrix(Matrix &x){
	for(int i=0;i<x.row;++i){
		for(int j=0;j<x.col;++j){
			scanf("%d",&x.matrix[i][j]);
		}
	}
	return;
}

//输出矩阵 
void OutputMatrix(Matrix x){
	for(int i=0;i<x.row;++i){
		for(int j=0;j<x.col;++j){		//每行数之间用空格隔开,每行最后一个数后面不应该有多余的空格
			if(j==0){
				printf("%d",x.matrix[i][j]);
			} else{
				printf(" %d ",x.matrix[i][j]);
			}	
		}
		printf("\n");
	}
	return;
}

int main(){
	int n,k;
	while(scanf("%d%d",&n,&k)!=EOF){
		Matrix x=Matrix(n,n);
		InputMatrix(x);
		Matrix answer=QuickPower(x,k);
		OutputMatrix(answer);
	}
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Miraitowa_FTY

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值