自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(30)
  • 资源 (9)
  • 收藏
  • 关注

原创 【python】np.random.choice()

np.random.choice():numpy.random.choice(a, size=None, replace=True, p=None)从a(只要是ndarray都可以,但必须是一维的)中随机抽取数字,并组成指定大小(size)的数组 replace:True表示可以取相同数字,False表示不可以取相同数字 数组p:与数组a相对应,表示取数组a中每个元素的概率,默认为选取每个元素的概率相同。 产生随机数:>>>np.random.choice(5)#从.

2021-01-02 20:15:14 1461

原创 【python】关键字yield——生成器

Python 的关键字 yield 有哪些用法和用途?yield 的用法有以下四种常见的情况:一个是生成器, 二是用于定义上下文管理器, 三是协程, 四是配合 from 形成 yield from 用于消费子生成器并传递消息。 这四种用法,其实都源于 yield 所具有的暂停的特性,也就说程序在运行到 yield 所在的位置 result = yield expr 时,先执行 yield expr 将产生的值返回给调用生成器的 caller,然后暂停,等待 caller 再次激...

2021-01-02 15:41:32 422 1

原创 【numpy】np.random.permutation()

【numpy】np.random.permutation()Randomly permute a sequence, or return a permuted range. 即随机排列序列,或返回随机范围。例1:对0-5之间的序列进行随机排序import numpy as npb = np.random.permutation(5)print(b)[3 2 0 4 1]例2:对一个list进行随机排序import numpy as npa = np.random.permu

2021-01-02 14:17:25 664

原创 【python】装饰器@property

python中的property装饰器 通过 @property 装饰器,可以直接通过方法名来访问方法,不需要在方法名后添加一对“()”小括号。@property 的语法格式如下:@propertydef 方法名(self) 代码块例如,定义一个矩形类,并定义用 @property 修饰的方法操作类中的 area 私有属性,代码如下:class Rect: def __init__(self,area): self.__area = a...

2021-01-02 13:54:07 175

原创 代码记录(4)

【pytorch】self.modules() 和 self.children()的区别self.modue和self.children的区别与联系import torchfrom torch import nn# hyper parametersin_dim=1n_hidden_1=1n_hidden_2=1out_dim=1class Net(nn.Module): def __init__(self, in_dim, n_hidden_1, n_hidden_2,

2020-12-29 22:38:09 1000

原创 代码记录(3)

torch.mul点乘都是broadcast的,可以用torch.mul(a, b)实现,也可以直接用*实现。>>> a = torch.ones(3,4)>>> atensor([[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]])>>> b = torch.Tensor([1,2,3]).reshape((3,1))>>> b

2020-12-09 20:19:38 330

原创 代码记录(2)

split():描述:Pythonsplit()通过指定分隔符对字符串进行切片,如果参数 num 有指定值,则分隔 num+1 个子字符串语法:str.split(str="", num=string.count(str)).参数:str -- 分隔符,默认为所有的空字符,包括空格、换行(\n)、制表符(\t)等。 num -- 分割次数。默认为 -1, 即分隔所有。返回值:返回分割后的字符串列表。示例:str = '/home/wangying/projec..

2020-12-03 21:54:16 285

原创 代码里一些方法记录

np.shape():功能:查看矩阵或者数组的维度举例:1. 3*3的矩阵>>>e=eye(3)>>>earray([[1.,0.,0.],[0.,1.,0.],[0.,0.,1.]])>>>e.shape(3,3)2.一维矩阵>>>b=array([1,2,3,4])>>&...

2020-11-20 16:39:19 835

原创 使用Linux时一些常用操作记录(持续更新中)

目录1.查看Ubuntu服务器的版本信息2.有关在Linux环境下创建虚拟环境的命令3.查看服务器的ip地址的命令:4.检查conda、python、pip版本号:5.查看显卡运行情况6.安装TensorFlow时,cuda、cudnn的对应版本:7.使用脚本文件上网8.更新conda版本9.添加清华源10.删除清华源11.安装指定版本的包12.安装gym=0.9.413.更新pip的版本14.检查cudnn,cuda的版本号1.查看Ub...

2020-11-13 16:13:20 550

原创 安装PyTorch-GPU版本+CUDA+CUDNN+Win10(显卡GeForce MX450)+Anaconda(最新版)

目录安装Pytorch-GPU版本1.检查电脑是否有显卡2.选择cuda的版本3.选择对应的cudnn的版本4.安装pytorch安装Pytorch-GPU版本系统:Win10环境:Anaconda显卡:GeForce MX4501.检查电脑是否有显卡在右下角wins下—右键—打开设备管理器—选择显示适配器如果存在NVIDIA XXX就可以安装GPU版本的PyTorch、Tensorflow。2.选择cuda的版本去cuda官网..

2020-11-09 11:09:25 15309 21

原创 Linux下Anaconda中指定的环境中安装Pytorch-GPU

1.硬件方面首先是检查电脑(服务器)上是否安装了cudnn,cuda。在安装了的前提下,检查cudnn,以及cuda的版本号:查看CUDA版本:cat /usr/local/cuda/version.txt查看cudnn版本:cat /usr/local/cuda/include/include/cudnn.h | grep CUDNN_MAJOR -A 22.查看torch不同版本发布日期:https://mirrors.tuna.tsinghua.edu.cn..

2020-11-03 17:24:09 833

原创 怎么在jupyter notebook中添加anaconda中已存在的虚拟环境

2020-10-27 20:44:11 381

原创 PPO

PPO摘要:我们提出了一种新的强化学习策略梯度方法,它通过与环境的交互在采样数据之间交替,并使用随机梯度上升优化替代目标函数。虽然标准的策略梯度方法对每个数据样本执行一次梯度更新,但我们提出了一个新的目标函数,它可以实现多个时期的小批量更新。这些新方法被称为“最近策略优化”(proximal policy optimization, PPO),具有信任区域策略优化(TRPO)的一些优点,但它们实现起来更简单、更通用,并且(从经验上)具有更好的样本复杂度。我们的实验在一组基准任务上测试PPO,包括模拟

2020-10-16 09:22:29 1506

原创 LATEX之索引

\documentclass[a4paper]{ctexart}\usepackage{ctex}\usepackage{xeCJK} %导入这个宏包,就可以支持中文\usepackage{makeidx}\usepackage{imakeidx}\begin{document} %使用makeidx宏包来建立索引。索引标题通过重定义\indexname更改。 %在导言区加载makeidx宏包,并输入\makeindex开始收集索引。 %在文中使用\index命令来插入索引标签。

2020-08-25 21:35:51 3969 1

原创 LATEX 之 BIBTEX参考文献

\documentclass[a4paper]{ctexart}\usepackage{ctex}\usepackage{xeCJK} %导入这个宏包,就可以支持中文\usepackage{natbib}\begin{document} %BIBTEX参考文献 %首先说一下BIBTEX参考文献的基本使用。通过重定义\refname或\bibname,前者是article类,后者是book类,可以更改参考文献章节的标题名称。这点在3.5.5节已经介绍过。 %关于参考文献如何编号加入目录中,请

2020-08-25 12:07:37 1920

原创 LATEX之自定义编号列表

自定义编号列表\documentclass[a4paper]{ctexart}\usepackage{ctex}\usepackage{xeCJK} %导入这个宏包,就可以支持中文\usepackage{enumitem}[inline]\usepackage{ulem}\begin{document} %编号列表的自定义主要使用enumitem宏包。主要的计数器如下所示。 %enumerate: %Counter:enumi、enumii、enumiii、enumiv. %La

2020-08-22 16:51:19 9229

原创 LATEX 之 自定义图表

自定义图表长表格booktabs:三线表彩色表格子图表GIF动态图\documentclass[a4paper]{ctexart}\usepackage{supertabular}\usepackage{longtable}\usepackage{tabu}\usepackage{booktabs}\usepackage[table]{xcolor}\usepackage{color}\usepackage{colortbl}\usepackage{array}\usep

2020-08-22 10:45:04 1128

原创 LATEX表格 之交替背景色

交替背景色的设置:需要用到一个技巧性的命令,就是xcolor宏包提供的命令\rowcolors,注意需要宏包的table选项支持,即:\usepackage[table]{xcolor}如上命令可以使表格带上背景色,它的语法是:\rowcolors []{}{}{}各个参数的解释还是看 xcolor 的文档:这里的row参数是起始行数,odd-row color 表示奇数行颜色,even-row color表示偶数行颜色;如:\rowcolors{1}{blue!20}{blue!10}表

2020-08-22 09:38:01 7543

原创 Latex之复杂距离、自定义章节样式、自定义目录样式

**1. 复杂距离**a.水平和竖直距离b.填充距离与弹性距离c.行距d.制表符e.悬挂缩进f.整段缩进2. 自定义章节样式% 导言区\documentclass[a4paper]{ctexart}\usepackage{ctex}\usepackage{xeCJK} %导入这个宏包,就可以支持中文\usepackage{amsmath}\usepackage{changepage} %提供了一个adjustwidth环境\usepackage{titlesec} %自定义

2020-08-20 20:14:40 5661 2

原创 Latex 自定义命令与环境、箱子

自定义命令与环境、箱子% 导言区\documentclass[a4paper]{article}\usepackage{ctex}\usepackage{xeCJK} %导入这个宏包,就可以支持中文\usepackage{amsthm}\usepackage{amsmath} %数学粗体所需要的的宏包\usepackage{graphicx} %缩放箱子\usepackage{xcolor}%5.1自定义命令与环境%自定义命令是LATEX相比于字处理软件MA Word更强大的功能之一

2020-08-17 22:58:42 1475

原创 LaTex 数学排版

!!!以下代码是在TexStudio编辑器中实现,有疑问的欢迎交流。需要源码的欢迎私聊。% 导言区\documentclass[a4paper]{article}\usepackage{ctex}\usepackage{xeCJK} %导入这个宏包,就可以支持中文\usepackage{amsmath} %数学粗体所需要的的宏包\usepackage{amsfonts} %空心粗体所需要的的宏包\usepackage{mathtools} %避免手动虚伪调整\usepackage{esin

2020-08-16 12:46:47 2499 1

原创 NIPS 2016 Tutorial:Generative Adversarial Networks学习记录

1.Why study generative modeling? 人们可能很自然地想知道为什么生成模型值得研究,尤其是那些只能够生成数据而不能提供密度函数估计的生成模型。毕竟,当应用于图像时,这样的模型似乎只提供了更多的图像,而世界上并不缺少图像。研究生成模型有几个原因,包括: ●从生成模型中进行训练和采样是对我们表示和操作高维概率分布能力的极好测试。高维概率分布是...

2020-03-23 11:10:20 625

原创 Tutorial on Varitional Autoencoder/CARL DOERSCH学习记录

Abstract在仅仅三年的时间里,变分自编码器(VAEs)已经成为复杂分布的无监督学习最流行的方法之一。VAEs之所以吸引人,是因为它建立在标准函数逼近器(神经网络)的基础上,可以用随机梯度下降法进行训练。VAEs已经在生成多种复杂数据方面显示出了潜力,包括手写数字[1,2]、人脸[1,3,4]、门牌号[5,6]、CIFAR图像[6]、物理模型的场景[4]、分割[7]、预测未来的静态图像[8...

2020-03-14 10:07:05 413

原创 Deep Reinforcement Learning : An Overview(Yuxi Li) 学习笔记

翻译的比较粗糙,仅供参考。2.2 Deep Learning深度学习与浅层学习形成对比。对于许多机器学习算法,如线性回归、逻辑回归、支持向量机(SVMs)、决策树和增强等,我们有输入层和输出层,在训练前可以用人工特征工程对输入进行转换。在深度学习中,在输入层和输出层之间有一个或多个隐藏层。在除输入层外的每一层,我们计算每个单元的输入,作为上一层单元的加权和;然后,我们通常使用非线性变换,或...

2020-03-14 10:03:43 3759

原创 ISODATA实验报告

报告原理部分有参考这篇帖子:https://www.cnblogs.com/huadongw/articles/4101306.html实验报告原文,及代码,去我的主页资源处下载。

2020-01-07 11:23:14 385

原创 K均值聚类算法 实验报告

K-means实验报告和源代码Python实现,我的主页资源处下载。

2020-01-07 11:05:56 9849

原创 重复剪辑近邻法

重复剪辑近邻法---实验报告、PPT、Matlab实现,请在我的资源处下载。

2020-01-07 10:52:09 1047

原创 基于最小错误率的贝叶斯决策

1实验目的进一步理解和掌握贝叶斯算法的基本原理; 能够使用贝叶斯算法对数据进行分类; 理解掌握最小错误率贝叶斯分类器2实验环境Windows 10,Python 3.7.4,PyCharm 2019.2.33实验原理 Bayes公式:设实验E的样本空间为S,X为E的事件,w1,w2,...,wn为S的一个划分(即类别)且有P(X)>0,P(wi)&...

2020-01-06 15:28:52 5288

原创 Fisher线性判别器 python实现 实验报告

实验目的 为了进一步理解和掌握Fisher线性判别法的基本原理和实现过程,利用Fisher判别法解决实际问题进行试验。实验环境Windows 10,Python 3.7.4,PyCharm 2019.2.3实验原理 Fisher线性判别法的基本思想是:通过寻找一个投影方向(线性变换,线性组合),将高维问题降低到一维空间来解决,并且要求变换后的一维数据类间...

2020-01-06 14:56:42 4504 1

原创 linux学习 FIRST DAY(发展背景、基本命令)

一、学习linux之前,我们先认识UnixUnix是一个强大的多用户,多任务的操作系统与1969年在AT&T的贝尔实验室开发。Unix的商标权是由国际开放组织所拥有。Unix操作系统是商业版的,需要收费,价格比Windows高。二、linuxlinux是基于Unix。诞生于1991年10月5日linux是由一个自由的,免费,源码开放的操作系统。linux存在很多不同的版本...

2019-01-06 13:22:28 241 1

bayesDataSet.rar

对应我上传的bayes代码的数据集,三个txt文件,把它放在bayes代码的同层目录下。数据集数据集数据集数据集

2020-07-02

ISODATA实验报告.docx

–K-均值算法通常适合于分类数目已知的聚类,而ISODATA算法则更加灵活; –从算法角度看,ISODATA算法与K-均值算法相似,聚类中心都是通过样本均值的迭代运算来决定的; –ISODATA算法加入了一些试探步骤,并且可以结合成人机交互的结构,使其能利用中间结果所取得的经验更好地进行分类。

2020-01-07

isodata.rar ISODATA代码实现

理解和掌握ISODATA聚类算法的基本流程。 –K-均值算法通常适合于分类数目已知的聚类,而ISODATA算法则更加灵活; –从算法角度看,ISODATA算法与K-均值算法相似,聚类中心都是通过样本均值的迭代运算来决定的; –ISODATA算法加入了一些试探步骤,并且可以结合成人机交互的结构,使其能利用中间结果所取得的经验更好地进行分类。

2020-01-07

Kmeans.py Kmeans的Python实现

K-Means算法是典型的基于距离的聚类算法,其中k代表类簇个数,means代表类簇内数据对象的均值(这种均值是一种对类簇中心的描述),因此,K-Means算法又称为k-均值算法。K-Means算法是一种基于划分的聚类算法,以距离作为数据对象间相似性度量的标准,即数据对象间的距离越小,则它们的相似性越高,则它们越有可能在同一个类簇。数据对象间距离的计算有很多种,k-means算法通常采用欧氏距离来计算数据对象间的距离。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。

2020-01-07

Kmeans.docx K均值聚类算法实验报告

1.理解掌握K-means聚类算法的基本原理; 2.学会用python实现K-means算法 K-Means算法是典型的基于距离的聚类算法,其中k代表类簇个数,means代表类簇内数据对象的均值(这种均值是一种对类簇中心的描述),因此,K-Means算法又称为k-均值算法。K-Means算法是一种基于划分的聚类算法,以距离作为数据对象间相似性度量的标准,即数据对象间的距离越小,则它们的相似性越高,则它们越有可能在同一个类簇。数据对象间距离的计算有很多种,k-means算法通常采用欧氏距离来计算数据对象间的距离。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。

2020-01-07

重复剪辑实验报告和PPT.rar

当不同类别的样本在分布上有交迭部分的,分类的错误率主要来自处于交迭区中的样本,如下图所示。当我们得到一个作为识别用的参考样本集时,由于不同类别交迭区域中不同类别的样本彼此穿插,导致用近邻法分类出错。因此如果能将不同类别交界处的样本以适当方式筛选,可以实现既减少样本数又提高正确识别率的双重目的。为此可以利用现有样本集对其自身进行剪辑。

2020-01-07

重复剪辑代码.rar Matlab实现

当不同类别的样本在分布上有交迭部分的,分类的错误率主要来自处于交迭区中的样本,如下图所示。当我们得到一个作为识别用的参考样本集时,由于不同类别交迭区域中不同类别的样本彼此穿插,导致用近邻法分类出错。因此如果能将不同类别交界处的样本以适当方式筛选,可以实现既减少样本数又提高正确识别率的双重目的。为此可以利用现有样本集对其自身进行剪辑。

2020-01-07

bayes代码.rar bayes代码实现 Python

进一步理解和掌握贝叶斯算法的基本原理; 能够使用贝叶斯算法对数据进行分类; 理解掌握最小错误率贝叶斯分类器

2020-01-06

Fisher.py 用Pyhton实现Fisher线性判别分析

使用Pyhton实现Fisher的线性判别。为了进一步理解和掌握Fisher线性判别法的基本原理和实现过程,利用Fisher判别法解决实际问题进行试验。

2020-01-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除