最大子序之和

题目

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶:

如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-subarray

代码及分析

方法一:动态规划法

定义变量cursum为包含当前时刻数值的最大的子序之和,若前一时刻的最大子序之和小于0,则更新cursum为nums[i],否则更新为cursum+nums[i]。然后更新整个数组的最大子序之和maxsum。

  int maxSubArray(vector<int>& nums)
   {
        int l = nums.size();
        if(nums.empty())
            return 0;
        int maxsum = nums[0];
        int cursum = nums[0];
        for(int i = 1; i < l; i ++)
        {
            cursum = max(cursum+nums[i], nums[i]);
            maxsum = max(maxsum, cursum);
        }
        return maxsum;
    }
复杂度:

时间复杂度: O(n)
空间复杂度: O(1)

方法二:分治法

该问题在文末提到可以用分治法进行求解。
分治法顾名思义,即是将问题分为几个部分,分别求解得到各个部分的最优值,然后选取几个最佳值中的最优值。
该问题可以将整个数组分为左半部分、中间部分以及右半部分,分别递归求解三部分中的最优值。(其中,中间部分相当于从当前数组分别向左、右两边遍历,找到最大值)。

int maxSubArray(vector<int>& nums)
{
	if(nums.empty())
		return 0;
	int res = dividenum(nums, 0, nums.size()-1);
    return res;
}
int dividenum(vector<int>& nums, int left, int right)
{
	if(left >= right)
		return nums[left];
	int mid = left + (right - left) / 2;
	int lmax = dividenum(nums, left, mid-1);
	int rmax = dividenum(nums, mid+1, right);
	int mmax = nums[mid], temp = mmax;
	for(int i = mid-1; i >= left; i--)
	{
		temp += nums[i];
		mmax = max(mmax, temp); 
	}
	temp = mmax;
	for(int i = mid+1; i <= right; i++)
	{
		temp += nums[i];
		mmax = max(mmax, temp);
	}
	return max(lmax, max(mmax, rmax));
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值