题目
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶:
如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-subarray
代码及分析
方法一:动态规划法
定义变量cursum为包含当前时刻数值的最大的子序之和,若前一时刻的最大子序之和小于0,则更新cursum为nums[i],否则更新为cursum+nums[i]。然后更新整个数组的最大子序之和maxsum。
int maxSubArray(vector<int>& nums)
{
int l = nums.size();
if(nums.empty())
return 0;
int maxsum = nums[0];
int cursum = nums[0];
for(int i = 1; i < l; i ++)
{
cursum = max(cursum+nums[i], nums[i]);
maxsum = max(maxsum, cursum);
}
return maxsum;
}
复杂度:
时间复杂度: O(n)
空间复杂度: O(1)
方法二:分治法
该问题在文末提到可以用分治法进行求解。
分治法顾名思义,即是将问题分为几个部分,分别求解得到各个部分的最优值,然后选取几个最佳值中的最优值。
该问题可以将整个数组分为左半部分、中间部分以及右半部分,分别递归求解三部分中的最优值。(其中,中间部分相当于从当前数组分别向左、右两边遍历,找到最大值)。
int maxSubArray(vector<int>& nums)
{
if(nums.empty())
return 0;
int res = dividenum(nums, 0, nums.size()-1);
return res;
}
int dividenum(vector<int>& nums, int left, int right)
{
if(left >= right)
return nums[left];
int mid = left + (right - left) / 2;
int lmax = dividenum(nums, left, mid-1);
int rmax = dividenum(nums, mid+1, right);
int mmax = nums[mid], temp = mmax;
for(int i = mid-1; i >= left; i--)
{
temp += nums[i];
mmax = max(mmax, temp);
}
temp = mmax;
for(int i = mid+1; i <= right; i++)
{
temp += nums[i];
mmax = max(mmax, temp);
}
return max(lmax, max(mmax, rmax));
}