LoRa 基于 Chirp Spectrum Spreading(CSS)技术对 Symbol 进行调制,其中 Chirp 是 LoRa 物理层的重要概念。
考虑我们有一段可用的带宽 BW, 以及设定的 Symbol Duration T T T ,即一个 Symbol 的传输时间。Chirp 可以看做一个在此带宽上的扫频,如下图所示。
其中红色直线表示 Chirp 信号瞬时频率与实践的关系,其值域是 [ − B W ω , B W ω ] [-\frac{BW}{\omega},\frac{BW}{\omega}] [−ωBW,ωBW] ,定义域在( 0 , T 0,T 0,T )上。绿色曲线则反映了其在时域上的部分表示,可以看到频率绝对值高的地方,两个波峰距离更短,这是从直观上对 Chirp 的理解。
我们可以写出 Chirp 信号瞬时频率与时间 t t t 的关系,即
f c h i r p ( t ) = − B W 2 + B W T t f_{chirp}(t)=-\frac{BW}{2}+\frac{BW}{T}t fchirp(t)=−2BW+TBWt
实际上,对于一个复函数 y ( t ) = e j ϕ ( t ) y(t) = e^{j\phi(t)} y(t)=ejϕ(t) 为虚数单位,即 -1 的平方根,其瞬时频率的表达式为
f y ( t ) = ϕ ′ ( t ) 2 π f_y(t) = \frac{\phi'(t)}{2\pi} fy(t)=2πϕ′(t)
因此了得到 Chirp 信号在时域上的表达式,我们可以求出 ϕ ( t ) \phi(t) ϕ(t),即
ϕ ( t ) = ∫ f c h i r p ( t ) d t = 2 π t ( − B W 2 + B W 2 T t ) \begin{aligned} \phi(t) & = \int f_{chirp}(t) dt \\ & = 2\pi t (-\frac{BW}{2} + \frac{BW}{2T} t) \end{aligned} ϕ(t)