Motivation
在线学习能够简单应用于分类分支,而应用于回归分支上有挑战,本文类似于DiMP,设计了在线学习的基于anchor-free的回归方式。有点类似将DiMP结合SIamfc++。
Method
区别在于设计了decoder提高分辨率,多尺度分类。
具体的设计几乎和DiMP一样
Experiments
Multi-scale classification
显然高分辨率有助于提升精度,但可能损害鲁棒性,结合起来效果取得平衡。
Online learning for regression
论文描述不符,It can be seen from Table 2 that online learning for regression branch can increase tracking performance by 6.1% of EAO and 5.1% of robustness on VOT2018。我看来在线学习的回归器没有那么明显的表现。
Feature fusion for regression
对于回归头来说,多尺度的特征还是很有必要的。
站在巨人肩膀,是必然的。整体上看还是有提升的。
思考与讨论
在我看来其实很难说他的Motivation有多work,因为从动机上来说回归分支主要学习目标的轮廓,可能不像分类学习目标和背景的分界使得模型更加鲁棒,回归太侧重于空间上的信息,离线学习也可以学习到很有用的信息,而跟踪过程中目标的边界本身可能也不是很确定所以在线学习碰到目标刚出现的区域也不确定是否有用,还得看跟踪结果是否准确,但是如果本身很准确为什么还要去学习。所以是个悖论,它不像分类不需要很精细,在线学习的分类能够完成对相似物体的区分,这更重要。而且从实验结果上看也不是很支撑,更多的体现在多尺度分类涨点更明显。