Fully Convolutional Online Tracking

本文探讨了在线学习在回归任务中的应用,特别是在回归分支设计上,通过借鉴DiMP并引入分辨率增强的Decoder,以提高多尺度分类性能。然而,作者质疑回归学习的鲁棒性和在线学习在目标轮廓学习上的有效性,指出与分类任务相比存在悖论。实验证明,虽然高分辨率确实提升精度,但对鲁棒性的影响尚待平衡。
摘要由CSDN通过智能技术生成

Motivation

在线学习能够简单应用于分类分支,而应用于回归分支上有挑战,本文类似于DiMP,设计了在线学习的基于anchor-free的回归方式。有点类似将DiMP结合SIamfc++。

Method

区别在于设计了decoder提高分辨率,多尺度分类。
在这里插入图片描述
具体的设计几乎和DiMP一样
在这里插入图片描述

Experiments

Multi-scale classification

在这里插入图片描述
显然高分辨率有助于提升精度,但可能损害鲁棒性,结合起来效果取得平衡。

Online learning for regression

在这里插入图片描述
论文描述不符,It can be seen from Table 2 that online learning for regression branch can increase tracking performance by 6.1% of EAO and 5.1% of robustness on VOT2018。我看来在线学习的回归器没有那么明显的表现。

Feature fusion for regression

在这里插入图片描述
对于回归头来说,多尺度的特征还是很有必要的。
在这里插入图片描述
站在巨人肩膀,是必然的。整体上看还是有提升的。

思考与讨论

在我看来其实很难说他的Motivation有多work,因为从动机上来说回归分支主要学习目标的轮廓,可能不像分类学习目标和背景的分界使得模型更加鲁棒,回归太侧重于空间上的信息,离线学习也可以学习到很有用的信息,而跟踪过程中目标的边界本身可能也不是很确定所以在线学习碰到目标刚出现的区域也不确定是否有用,还得看跟踪结果是否准确,但是如果本身很准确为什么还要去学习。所以是个悖论,它不像分类不需要很精细,在线学习的分类能够完成对相似物体的区分,这更重要。而且从实验结果上看也不是很支撑,更多的体现在多尺度分类涨点更明显。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值