Agent

Agent = LLM(大型语言模型)+ 记忆 + 规划技能 + 工具使用
四个方面:规划(planning),工具(Tools),执行(Action), 和记忆(Memory)
在这里插入图片描述
在 LLM 支持的自主Agent系统中,LLM 充当Agents的大脑,并辅以几个关键组成部分:

  • 规划
    • 子目标和分解:Agents将大型任务分解为更小的、可管理的子目标,从而能够有效处理复杂的任务。
    • 反思和完善:Agents可以对过去的行为进行自我批评和自我反思,从错误中吸取教训,并针对未来的步骤进行完善,从而提高最终结果的质量。
  • 记忆
    • 短期记忆:我认为所有的上下文学习(参见提示工程)都是利用模型的短期记忆来学习。
    • 长期记忆:这为Agents提供了长时间保留和回忆(无限)信息的能力,通常是通过利用外部向量存储和快速检索来实现。
  • 工具使用
    • Agents学习调用外部 API 来获取模型权重中缺失的额外信息(通常在预训练后很难更改),包括当前信息、代码执行能力、对专有信息源的访问等。

Agent决策流程:
在这里插入图片描述
感知(Perception)是指Agent从环境中收集信息并从中提取相关知识的能力。
规划(Planning)是指Agent为了某一目标而作出的决策过程。
行动(Action)是指基于环境和规划做出的动作。
其中,Policy是Agent做出Action的核心决策,而行动又通过观察(Observation)成为进一步Perception的前提和基础,形成自主地闭环学习过程
生成Agents架构
生成Agents的设计将 LLM 与记忆、规划和反射机制相结合,使Agents能够根据过去的经验进行行为,并与其他Agents进行交互。(生成式代理的整体行为分为【记忆与检索】【反思】【规划与反应】三大部分构成)
在这里插入图片描述
代理感知它们的环境,并将所有感知保存在称为记忆流的全面记录中,记录了代理的经历。根据它们的感知,该架构检索相关的记忆,然后使用这些检索到的行为来确定一个动作。这些检索到的记忆还用于形成更长期的计划,并创建更高级别的反思,这两者都被输入到记忆流中以供将来使用。
在这里插入图片描述

未来方向
AI-Agents大致上会分为两大方向:Autonomous Agents和Generative Agents
Autonomous Agents以Auto-GPT为例,代表了通过自然语言的需求描述,能够自动化执行各项任务达成目标结果,在这个协作关系中,Autonomous Agents是服务于人,具有明确的工具属性;
Generative Agents以斯坦福发表的25个智能体的虚拟小镇为例,Generative Agents作为一个具有类人格特征、自主决策能力以及长期记忆等特征,更偏向“原生性”概念的AI-Agents,在这个协作关系中,Agents具有数字原生意义的社会关系,不仅仅是服务于人的工具;

总结
AI Agent =>优秀的prompt工程、强大的大语言模型、好用灵活的工具、多模态模型的调用能力、人机协作的交互等。
AI Agent问题:效果不稳定、复杂推理能力不够强、外部生态融合不高,主要以搜索和文件读取为准、多步推理成本过高、响应时间太久、上下文的限制(或者说如何准确的利用长期记忆)等。
解决方法:
1、优化prompt,减少不必要的token消耗
2、成本优化和监控,达到次数就停止
3、向量缓存技术,相似的问题不经过大模型处理,直接出结果
4、微调开源大模型来增强工具调用能力
5、向量数据库。

内容概要:本文围绕“基于蓄电池进行调峰和频率调节研究”,提出了一种采用超线性增益的联合优化方法,并通过Matlab代码实现相关仿真与验证。研究聚焦于电力系统中蓄电池在调峰(平衡负荷波动)和频率调节(维持电网稳定)双重功能下的协调优化问题,通过构建数学模型,引入超线性增益机制提升控制精度与响应效率,从而提高储能系统的运行经济性与电网稳定性。文中还提供了完整的代码资源链接,便于复现与进一步研究,属于电力系统智能管理领域的典型技术应用。; 适合人群:具备电力系统基础知识、储能技术背景及一定Matlab编程能力基于蓄电池进行调峰和频率调节研究【超线性增益的联合优化】(Matlab代码实现)的高校研究生、科研人员或从事新能源系统优化的工程技术人员;尤其适合开展储能调度、微电网优化等相关课题研究的学习者。; 使用场景及目标:① 掌握蓄电池在电力系统调峰与调频中的协同工作机制;② 学习并复现基于超线性增益的联合优化算法设计与建模方法;③ 利用Matlab/Simulink平台实现储能系统优化控制策略的仿真分析,服务于科研论文复现、项目开发或算法改进。; 阅读建议:建议结合文中提到的YALMIP工具包和网盘资源,边阅读边运行代码,重点关注目标函数构建、约束条件设置及优化求解流程;同时可对比传统线性增益方法,深入理解超线性增益带来的性能提升机制。
内容概要:本文介绍了一种基于稀疏贝叶斯学习(SBL)的轴承故障诊断方法,提出两种群稀疏学习算法用于提取故障脉冲信号。第一种算法仅利用故障脉冲的群稀疏性,第二种进一步结合其周期性行为,以提升故障特征提取的准确性与鲁棒性。文档提供了完整的Matlab代码实现,适用于振动信号分析与早期故障检测,具有较强的工程应用价值。此外,文中还附带了多个科研领域的仿真资源链接,涵盖电力系统、信号处理、机器学习、路径规划等多个方向,突出MATLAB在科研仿真中的广泛应用。; 适合人群:具备一定信号处理或机械故障诊断基础,熟悉Matlab编程,从【轴承故障诊断】一种用于轴承故障诊断的稀疏贝叶斯学习(SBL),两种群稀疏学习算法来提取故障脉冲,第一种仅利用故障脉冲的群稀疏性,第二种则利用故障脉冲的额外周期性行为(Matlab代码实现)事科研或工程应用的研究生、工程师及科研人员;对智能诊断、稀疏表示、贝叶斯学习感兴趣的技术人员。; 使用场景及目标:①应用于旋转机械(如轴承、齿轮箱)的早期故障检测与健康监测;②研究群稀疏性与周期性先验在信号分离中的建模方法;③复现SBL算法并拓展至其他故障特征提取任务;④结合所提供的网盘资源开展相关领域仿真研究与算法开发。; 阅读建议:建议结合Matlab代码逐行理解算法实现细节,重点关注群稀疏建模与周期性约束的数学表达;推荐对比两种算法的实验结果以深入理解其性能差异;同时可利用提供的网盘资源拓展学习其他仿真技术,提升综合科研能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值