区间合并
区间合并思路:以左边端点排序,然后下一个左端点比较以前右端点的最大值,记住这里必须是比较右端点最大值。更新左右端点就行了;
代码如下:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=1e5+5;
struct node{
int l;
int r;
}a[N];
bool cmp(node x,node y){
return x.l<y.l;
}
int main(){
int n;
cin>>n;
for(int i=0;i<n;i++) cin>>a[i].l>>a[i].r;
sort(a,a+n,cmp);//以左端点排序
int len=n;//记录结构体长度,把更新后的区间放入在原结构体后面
int l=a[0].l,r=a[0].r;//记录左右端点
for(int i=1;i<n;i++){
if(a[i].l<r){//判断当前区间是否和前面的重合,重合则更新右端点
r=max(r,a[i].r);
}
else{//当前区间与前面区间不重合,也开启下一个区间,更新左右端点,并把前面区间加入到结构体
a[len].l=l;
a[len++].r=r;
l=a[i].l;
r=a[i].r;
}
}
a[len].l=l;
a[len++].r=r;
for(int i=n;i<len;i++) cout<<a[i].l<<" "<<a[i].r<<endl;
return 0;
}
再来一道例题:
链接:https://ac.nowcoder.com/acm/problem/16649
来源:牛客网
题目描述
某校大门外长度为L的马路上有一排树,每两棵相邻的树之间的间隔都是1米。我们可以把马路看成一个数轴,马路的一端在数轴0的位置,另一端在L的位置;数轴上的每个整数点,即0,1,2,……,L,都种有一棵树。
由于马路上有一些区域要用来建地铁。这些区域用它们在数轴上的起始点和终止点表示。已知任一区域的起始点和终止点的坐标都是整数,区域之间可能有重合的部分。现在要把这些区域中的树(包括区域端点处的两棵树)移走。你的任务是计算将这些树都移走后,马路上还有多少棵树。
输入描述:
第一行有两个整数:L(1 <= L <= 10000)和 M(1 <= M <= 100),L代表马路的长度,M代表区域的数目,L和M之间用一个空格隔开。接下来的M行每行包含两个不同的整数,用一个空格隔开,表示一个区域的起始点和终止点的坐标。
输出描述:
包括一行,这一行只包含一个整数,表示马路上剩余的树的数目。
示例1
输入
500 3
150 300
100 200
470 471
输出
298
备注:
对于20%的数据,区域之间没有重合的部分;
对于其它的数据,区域之间有重合的情况。
这道题数据给的比较小,暴力也能过,我这就不写暴力思路了;
思路:离散化区间,在把区间合并,算出扣掉多少树,最后用总的树减去扣掉的树就是答案
代码如下:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int N=3e4+5;
struct node{
int l;
int r;
}a[105];
bool cmp(node x,node y){
return x.l<y.l;
}
int main() {
int L,M;
cin>>L>>M;
for(int i=0;i<M;i++) cin>>a[i].l>>a[i].r;
sort(a,a+M,cmp);
int l=a[0].l,r=a[0].r;
int ans=0;
for(int i=1;i<M;i++){
if(a[i].l<=r) r=max(r,a[i].r);
else{
ans+=(r-l+1);
l=a[i].l;
r=a[i].r;
}
}
ans+=(r-l+1);
cout<<L-ans+1<<endl;
return 0;
}