Pandas读取和写入excel表格时对日期格式的处理

最近使用pandas遇到一个问题,从excel读取日期时因为是datetime类型,所以会是“年月日时分秒”格式,此时须用.dt.strftime(’%Y-%m-%d’)去掉时分秒;但存入excel文档时因为是datetime类型,excel又自动加上了时分秒。解决方法是使用.apply(str)方法在存入excel前把datetime类型转换为string类型,再对string进行切片。.apply()方法对于要批量处理单元格内容十分有用。

pandas练习代码如下:

import pandas as pd

file_path = '/Users/Administrator/Desktop/'
file_name = 'test.xls'
file = file_path + file_name
data = pd.read_excel(file,sheet_name = 'PLANNING',header=8)
data.dropna(axis=0,how='all')
data.rename(columns={
   'PURCHASE ORDER DATE': 
### 使用 Pandas读取写入 Excel 文件 #### 1. 安装 Pandas 其他依赖项 为了能够使用 Pandas 处理 Excel 文件,需要先安装 `pandas` 及其依赖库 `openpyxl` 或 `xlsxwriter`。可以通过以下命令完成安装: ```bash pip install pandas openpyxl xlsxwriter ``` 这一步骤对于确保功能正常运行至关重要[^1]。 --- #### 2. 使用 Pandas 读取 Excel 文件 以下是使用 Pandas 读取 Excel 文件的示例代码: ```python import pandas as pd # 加载 Excel 文件到 DataFrame 中 file_path = 'example.xlsx' # 替换为实际文件路径 sheet_name = 'Sheet1' # 替换为目标工作表名称 # 方法一:读取整个 Excel 工作簿中的指定工作表 df = pd.read_excel(file_path, sheet_name=sheet_name) print(df.head()) # 显示前几行数据以便验证 ``` 如果需要一次性读取多个工作表,则可以利用字典形式存储各个工作表的内容: ```python # 方法二:读取所有工作表并将它们存放在一个字典中 all_sheets_dict = pd.read_excel(file_path, sheet_name=None) # None 表示读取全部工作表 for sheet_name, data_frame in all_sheets_dict.items(): print(f"Work Sheet Name: {sheet_name}") print(data_frame.head()) ``` 以上方法展示了如何灵活处理单个工作表或多张工作表的情况[^3]。 --- #### 3. 使用 Pandas 将数据写入 Excel 文件 下面是一个简单的例子,展示如何创建一个新的 Excel 文件或将现有数据保存回 Excel 文件中: ```python import pandas as pd # 创建一个示例 DataFrame data = { 'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, 30, 35], 'City': ['New York', 'Los Angeles', 'Chicago'] } df = pd.DataFrame(data) # 写入 Excel 文件 output_file = 'output.xlsx' with pd.ExcelWriter(output_file, engine='openpyxl') as writer: df.to_excel(writer, sheet_name='Data', index=False) # 不写入索引列 print(f"已成功将数据写入 '{output_file}'") ``` 注意,在这里我们指定了 `engine='openpyxl'` 参数来支持 `.xlsx` 格式的文件操作。如果没有特别需求,默认情况下也可以省略该参数[^2]。 当涉及更复杂的场景比如向同一个 Excel 文件里追加不同内容,可重复调用 `to_excel()` 函数即可实现多页布局效果。 --- #### 4. 高级技巧——自定义样式与格式化输出 虽然基础的功能已经满足大部分日常办公需求,但如果希望进一步美化最终生成的结果文档外观的话,还可以借助第三方工具包如 `XlsxWriter` 来增强控制力。例如设置单元格字体颜色、边框线宽窄度等等属性均成为可能。 不过这部分超出了当前讨论范围,请自行查阅官方文档获取更多信息。 --- ### 总结 本文介绍了基于 PythonPandas 库执行基本任务的方法,即从本地磁盘上的 .xls/.xlsx 类型资源提取结构化信息以及反过来把内存里的表格对象持久化落地的过程[^2][^3]。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值