解决LeetCode 47. 全排列 II 问题的正确姿势:深入分析剪枝与状态跟踪

问题描述

给定一个可能包含重复元素的整数数组 nums,返回所有可能的唯一全排列。例如,输入 nums = [1,1,2],期望输出为:
[[1,1,2], [1,2,1], [2,1,1]]


常见错误代码与问题分析

错误代码示例

class Solution {
    public List<List<Integer>> permuteUnique(int[] nums) {
        List<List<Integer>> result = new ArrayList<>();
        Arrays.sort(nums);
        backTrack(result, new ArrayList<>(), nums);
        return result;
    }

    public void backTrack(List<List<Integer>> result, List<Integer> path, int[] nums) {
        if (path.size() == nums.length) {
            result.add(new ArrayList(path));
            return;
        }
        HashSet<Integer> used = new HashSet<>();
        for (int i = 0; i < nums.length; i++) {
            if (i > 0 && nums[i] == nums[i - 1] || used.contains(nums[i])) {
                continue;
            }
            path.add(nums[i]);
            used.add(nums[i]);
            backTrack(result, path, nums);
            path.remove(path.size() - 1);
        }
    }
}

错误分析

  1. 错误使用 HashSet 跟踪元素
    HashSet 仅通过值去重,无法区分相同值的不同索引。例如,在 nums = [1,1,2] 中,两个 1 会被视为重复,导致合法排列 [1,1,2] 被错误跳过。

  2. 剪枝条件不完整
    原代码的剪枝条件 i > 0 && nums[i] == nums[i - 1] 未考虑元素的使用状态,无法正确避免同一层递归中的重复分支。


正确解决方案

修正后的代码

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

class Solution {
    public List<List<Integer>> permuteUnique(int[] nums) {
        List<List<Integer>> result = new ArrayList<>();
        if (nums == null || nums.length == 0) return result;
        Arrays.sort(nums);
        backtrack(result, new ArrayList<>(), nums, new boolean[nums.length]);
        return result;
    }

    private void backtrack(List<List<Integer>> result, List<Integer> path, int[] nums, boolean[] used) {
        if (path.size() == nums.length) {
            result.add(new ArrayList<>(path));
            return;
        }
        for (int i = 0; i < nums.length; i++) {
            if (used[i]) continue;
            if (i > 0 && nums[i] == nums[i - 1] && !used[i - 1]) continue;
            
            used[i] = true;
            path.add(nums[i]);
            backtrack(result, path, nums, used);
            path.remove(path.size() - 1);
            used[i] = false;
        }
    }
}

关键修正点

  1. 引入 boolean[] used 数组
    通过索引精确记录元素是否被使用,区分相同值的不同位置。

  2. 完善剪枝条件
    使用 i > 0 && nums[i] == nums[i - 1] && !used[i - 1] 确保仅在相同值的元素未被使用时剪枝,避免重复分支。


核心逻辑详解

1. 为何使用 boolean[] used 而非 HashSet

  • 区分相同值的不同索引
    例如 nums = [1,1,2],通过 used 数组可明确标记第一个 1(索引0)和第二个 1(索引1)的使用状态。
  • 时间复杂度与空间效率
    数组的索引访问为 O(1),且内存连续,无哈希表动态扩容的开销。

2. 剪枝条件 !used[i - 1] 的作用

  • 避免同一层递归的重复分支
    nums[i] == nums[i-1] 且前一个元素未被使用时(!used[i-1]),说明已存在以该值开头的分支,需跳过当前元素。
  • 允许深层递归使用相同值
    若前一个元素已被使用(used[i-1] = true),则当前处于深层递归,允许生成 [1,1,2] 等合法排列。

场景对比:何时用数组?何时用哈希表?

场景数组(boolean[])哈希表(HashSet)
是否需要区分相同值的不同位置✔️(如全排列问题)❌(仅判断值是否存在)
数据范围小且连续(如 n ≤ 1e6大或不连续
时间复杂度O(1)(直接索引访问)O(1)(平均情况)
空间复杂度固定空间动态扩展
适用问题类型排列、组合、子集(含重复元素)去重、存在性判断(如两数之和)

实例分析

nums = [1,1,2] 为例:

  1. 排序后数组[1,1,2]
  2. 第一层递归:选择第一个 1(索引0),标记 used[0] = true
  3. 第二层递归:允许选择第二个 1(索引1),标记 used[1] = true
  4. 第三层递归:选择 2,生成排列 [1,1,2]
  5. 回溯后剪枝:若尝试在第一层选择第二个 1,触发 !used[0] 剪枝条件,避免重复。

总结

  • 优先使用数组:当需要区分相同值的不同位置或数据范围较小时。
  • 灵活选择哈希表:当仅需判断值的存在性且数据稀疏时。
  • 剪枝条件是处理重复元素的关键,需结合元素值和索引状态综合判断。

通过合理选择数据结构和剪枝策略,可高效解决全排列 II 及其他回溯问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

进击的小白菜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值