蓝桥杯练习【数论基础】——找素数

题目描述:

给定区间[L, R] , 请计算区间中素数的个数。

输入:

两个数L和R。

数据规模和约定
2  < =  L  < =  R  < =  2147483647  R-L  < =  1000000

输出:

一行,区间中素数的个数。

样例输入:

2 11

样例输出:

5

参考代码:

/*
    分析:
        首先,判断素数,使用埃式筛法 
        其次,区间范围过大,不能用下标表示所有数字,
    思路:
        使用埃式筛法,筛出 [2,sqrt(R)] 中的素数,(因为一个数的最大质因子是 sqrt(x)) 
        再把这些素数,在 [L,R]区间内的倍数,给筛掉; 
*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#define MaxSize 1000002
using namespace std;
bool a[MaxSize];            // 筛 [2,sqrt(R)],此时下标 i 表示 数字 
bool res[MaxSize];            // 筛 [L,R] 下标表示 i - L ( i 是实际想表示的数)  
size_t L,R;                    // 区间 
int cnt;                    // [L,R] 区间内的素数个数计数 
int main(){
    ios::sync_with_stdio(false);
    cin.tie(0);cout.tie(0);
    cin>>L>>R;
    memset(a,true,sizeof(a));
    memset(res,true,sizeof(res));
    a[1] = false;            // false 表示不是素数 
    a[2] = true;            // true  表示  是素数 
    for(size_t i = 2;i * i <= R;++i ){
        // i 表示正在筛的数字,从 2 开始 
        if(a[i]){
        // 筛 [2,sqrt(R)] 
            //如果是素数,就把他的 整数倍的数 给筛掉 
            for(size_t j = 2;j * i <= sqrt(R);++j)
            // j 表示倍数,从 2 倍开始 
                a[i*j] = false;
        // 去除 [2,sqrt(R)] 区间内的素数在 [L,R] 区间内的整数倍的数字 
            //如果是素数,那么要把 其 在 [L,R] 内的整数倍的数给筛掉
            // 那么最小是 几倍 的数字 , 会落在 [L,R] 区间内呢?
            // 倍数是 [ L / i ] 向上取整    
            for(size_t k = (L / i + (bool)(L % i));k * i <= R;++k){
                // k 表示倍数,注意向上取整的表示 
                if(k != 1)
                // 注意 倍数不能是 1 倍,否则会把原来的状态改变了 
                res[k * i - L] = false;
            }  
        }
    }
    // 最后统计一下 
    for(size_t j = 0;j <= R-L;++j){
        if(res[j])    
            ++cnt;
    }
    cout<<cnt;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值