题目描述:
给定区间[L, R] , 请计算区间中素数的个数。
输入:
两个数L和R。
数据规模和约定
2 < = L < = R < = 2147483647 R-L < = 1000000
输出:
一行,区间中素数的个数。
样例输入:
2 11
样例输出:
5
参考代码:
/*
分析:
首先,判断素数,使用埃式筛法
其次,区间范围过大,不能用下标表示所有数字,
思路:
使用埃式筛法,筛出 [2,sqrt(R)] 中的素数,(因为一个数的最大质因子是 sqrt(x))
再把这些素数,在 [L,R]区间内的倍数,给筛掉;
*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#define MaxSize 1000002
using namespace std;
bool a[MaxSize]; // 筛 [2,sqrt(R)],此时下标 i 表示 数字
bool res[MaxSize]; // 筛 [L,R] 下标表示 i - L ( i 是实际想表示的数)
size_t L,R; // 区间
int cnt; // [L,R] 区间内的素数个数计数
int main(){
ios::sync_with_stdio(false);
cin.tie(0);cout.tie(0);
cin>>L>>R;
memset(a,true,sizeof(a));
memset(res,true,sizeof(res));
a[1] = false; // false 表示不是素数
a[2] = true; // true 表示 是素数
for(size_t i = 2;i * i <= R;++i ){
// i 表示正在筛的数字,从 2 开始
if(a[i]){
// 筛 [2,sqrt(R)]
//如果是素数,就把他的 整数倍的数 给筛掉
for(size_t j = 2;j * i <= sqrt(R);++j)
// j 表示倍数,从 2 倍开始
a[i*j] = false;
// 去除 [2,sqrt(R)] 区间内的素数在 [L,R] 区间内的整数倍的数字
//如果是素数,那么要把 其 在 [L,R] 内的整数倍的数给筛掉
// 那么最小是 几倍 的数字 , 会落在 [L,R] 区间内呢?
// 倍数是 [ L / i ] 向上取整
for(size_t k = (L / i + (bool)(L % i));k * i <= R;++k){
// k 表示倍数,注意向上取整的表示
if(k != 1)
// 注意 倍数不能是 1 倍,否则会把原来的状态改变了
res[k * i - L] = false;
}
}
}
// 最后统计一下
for(size_t j = 0;j <= R-L;++j){
if(res[j])
++cnt;
}
cout<<cnt;
return 0;
}