缓存穿透
缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。
@Override
public List<TbContent> findByCategoryId(Long categoryId) { // -1
// 加入缓存的代码:
List<TbContent> list = (List<TbContent>) redisTemplate.boundHashOps("content").get(categoryId);
if(list==null){
System.out.println("查询数据库===================");
TbContentExample example = new TbContentExample();
Criteria criteria = example.createCriteria();
// 有效广告:
criteria.andStatusEqualTo("1");
criteria.andCategoryIdEqualTo(categoryId);
// 排序
example.setOrderByClause("sort_order");
list = contentMapper.selectByExample(example);
if(list !=null){
redisTemplate.boundHashOps("content").put(categoryId, list);
}
}else{
System.out.println("从缓存中获取====================");
}
return list;
}
解决方案 :
1). 设置过期时间
@Override
public List<TbContent> findByCategoryId(Long categoryId) {
// 加入缓存的代码:
List<TbContent> list = (List<TbContent>) redisTemplate.boundValueOps("content_"+categoryId).get();
if(list == null){
System.out.println("查询数据库===================");
TbContentExample example = new TbContentExample();
Criteria criteria = example.createCriteria();
// 有效广告:
criteria.andStatusEqualTo("1");
criteria.andCategoryIdEqualTo(categoryId);
// 排序
example.setOrderByClause("sort_order");
list = contentMapper.selectByExample(example);
if(list != null){
redisTemplate.boundValueOps("content_"+categoryId).set(list); //-1
}else{ //-1
redisTemplate.boundValueOps("content_"+categoryId).set(null); //null
redisTemplate.expire("content_"+categoryId,7200, TimeUnit.SECONDS);
}
}else{
System.out.println("从缓存中获取====================");
}
return list;
}
2). 只查询缓存, 不查询数据库 ;
缓存击穿
缓存击穿,是指一个key非常热点,在不停的扛着大并发,大并发集中对这一个点进行访问,当这个key在失效的瞬间,持续的大并发就穿破缓存,直接请求数据库,就像在一个屏障上凿开了一个洞 。
解决方案 :
1). 对热点数据 , 不设置过期时间 ;
2). 互斥锁
public class RedisDemo {
private static Lock lock = new ReentrantLock();
public static String getData(String key) throws InterruptedException {
String result = getDataFromRedis(key); //从redis获取数据
if(result == null){ // 如果数据为null , 需要从数据库中获取
if(lock.tryLock()){ //尝试获取锁
result = getDataFromMysql(key); //从数据库中查询
if(result != null){ //如果查询到数据, 就缓存在redis中
saveDataToRedis(key,result);
}
lock.unlock();//释放锁
}else{
TimeUnit.MILLISECONDS.sleep(100);
result = getData(key);
}
}
return result;
}
private static void saveDataToRedis(String key, String result) {
System.out.println("保存数据到redis中 , key - value ");
}
private static String getDataFromMysql(String key) {
System.out.println("从数据库中获取数据 ");
return null;
}
public static String getDataFromRedis(String key){
System.out.println("从redis中获取数据 ");
return null;
}
}
缓存雪崩
缓存雪崩,是指在某一个时间点,缓存集中过期失效。
产生雪崩的原因之一,比如在写本文的时候,马上就要到双十二零点,很快就会迎来一波抢购,这波商品时间比较集中的放入了缓存,假设缓存一个小时。那么到了凌晨一点钟的时候,这批商品的缓存就都过期了。而对这批商品的访问查询,都落到了数据库上,对于数据库而言,就会产生周期性的压力波峰。
解决方案
1). 如果设置缓存的过期时间 , 需要根据业务划分 , 不同类型的数据, 可以设置不同的过期时间, 不要设置为相同的过期时间, 从而造成缓存在同一个时间点过期 ;
2). 只查询redis , 不查询数据库 ;
Linux 版本的 redis 安装
1). 上传 redis-3.0.0.tar.gz
alt + p ------> put D:/redis-3.0.0.tar.gz
2). 安装C语言编译环境
yum install gcc-c++ (需要联网)
3). 解压压缩包
tar -zxvf redis-3.0.0.tar.gz
4). 编译源码
cd redis-3.0.0
make
5). 安装
make install PREFIX=/usr/local/redis
6). 拷贝解压目录下的redis配置文件redis.conf到redis安装目录
cp redis.conf /usr/local/redis
7). 启动
cd /usr/local/redis
bin/redis-server redis.conf