高可用系统的基本概念

本文详细介绍了高可用系统的基本概念,包括定义、提升可用性的三条原则(消除单点故障、可靠的交叉点服务、提前检测故障并快速恢复)以及面临的挑战,如状态一致性与故障快速恢复。通过平均故障间隔时间(MTBF)和平均修复间隔时间(MTTR)量化了可用性,并提供了计算示例。此外,还强调了确定可用性标准、建立监控与恢复机制以及故障学习的重要性。
摘要由CSDN通过智能技术生成

近期被问及高可用系统的一些概念,但是没有系统地整理过这些概念,诸如什么是高可用系统,什么是SLA,怎么定义几个9等,所以整理一篇CheatSheet短文,系统性地掌握一下高可用的一些概念。

一、高可用的定义

Wiki对高可用系统的描述是这样的

High availability (HA) is a characteristic of a system which aims to ensure an agreed level of operational performance, usually uptime, for a higher than normal period.

其实这个概念很模糊,高本来就是相对低而言的,所以高可用是在一个约定可接受的服务能力级别基础上的一个higher than normal的概念,没有约定量化的话,就没有办法衡量。

说人话就是,可用性是系统不间断对外提供服务的能力,那么肯定的是,这种能力越强,其可用性越高,相对‘约定’来说,这就是高可用系统。

如果用一个公式来表达的话,类似这样:

可 用 性 = < 可 用 时 长 > < 可 用 时 长 > + < 故 障 时 长 > 可用性 = \frac {<可用时长>} {<可用时长>+<故障时长>} =<>+<><>

这是一个较为抽象的表达,那么当面对实际应用时,我们需要十分明确的阐明,什么是可用、什么是故障,才能够进行量化。

可用

对于不同的系统,可用代表的含义不同。对于一个运行在主机上,提供多个接口的服务。对于机房来说,主机系统正常、硬件正常、供电正常,可视为可用;对于SRE来说,可能需要主机上的系统配置正确、Side car服务运行正常等才视为可用;而对于业务团队来说,需要业务功能正常,逻辑正确,才算可用。

放大来看,对于业务团队,也要看是哪种业务,有的业务只要有部分核心接口正常工作,就可以视为服务可用;而有些业务,需要服务的所有功能都正常工作,才能视为可用,还有些业务不仅要求功能可用,还有一些性能上的要求。

这就是服务级别协商(SLA - Service Level Agreement)的概念,我们维护的服务不能简单的自己评价其可用性,而是与下游达成这样的约定,低于约定的这个水准,你的服务对于下游将变得没有价值,甚至对下游是危险的。

故障

从工业角度讲,故障就是失去产品规定功能的情况。还需要考虑具体上下文,比如网络连通,但是功能缺失,那么从网络运营方看是没有故障的,从业务运营方看就是有故障的,所以说故障时,需要统一上下文。此外,这里讲的故障,需要是可恢复的,否则讨论故障将变得没有意义。

另外,还有一些行为在外部看来是故障,实际是计划操作的一部分,比如对系统的维护、软件升级、更新软件部署等行为,这是需要约定的一部分。

那么如何设计系统,可以提升可用性呢?wiki上给出了这样三原则:

二、提升可用性的三条原则

有三条原则可以帮助系统提升可用性

  1. 消除单点故障 (Elimination of single points of failure(SPOF))
  2. 可靠的交叉点服务 (Reliable crossover)
  3. 提前检测故障并快速恢复 (Detection of failures as they occur)

1. 消除单点故障

Elimination of single points of failure(SPOF)

单点故障很好理解,服务没有备份,宕机就停止服务了,数据没有备份,删除就消失了,单引擎飞机出现故障显然是致命的。

2. 可靠的交叉点服务

Reliable crossover

交叉点是指无法去状态、不容易冗余的一些节点,比如DNS、消息队列。一架飞机的通讯故障可能影响范围尚小,而如果繁忙的机场塔台通讯系统一旦出现故障,那将是灾难性的,所以其必须足够可靠。

3. 提前检测故障并快速恢复

Detection of failures as they occur

提前检测故障比较倾向于运维侧,主要是对系统状态的监控,以及故障的人工/自动化恢复,以达到早发现、早治疗的目标。

三条原则都是在提升其正常服务的时间长度,减少或缩短故障出现的几率及持续时长,也呼应了高可用的定义。虽然看起来简单但应用起来却不是寥寥几句可以概括的,同时可能会带来side effect,这也是高可用设计需要面临的挑战。

三、高可用面临的挑战

状态一致性

消除单点故障一般的做法是引入冗余,对于无状态的服务,冗余十分好用,但是一旦服务有状态,情况就会变得复杂。

例如,主备冗余的系统中,数据是否要保持一致?主备之间如何同步数据?是数据过程是Sync的还是Async的?如果是Sync进行的,那么因此带来的性能下降能否承受?当主节点故障时,客户端如何failover到备用节点的?如果该主从节点是分布式系统中的一个partition,分布式集群如何做到状态一致?…

这些里面问题每一条都可以单开话题来讲。

故障的快速恢复

俗话说没有不出问题的系统,出现问题能够快速恢复也是高可用的重要一环。故障恢复也包含很多展开话题,例如,对故障的检测与发现,如果不能及时发现故障,也就谈不上快速恢复了。

当发生故障时切忌进行根因调查,应以快速恢复或回滚到上一状态为主,尽量保留问题调查的材料。

平时也应该对可能出现的故障进行演练,总结出一套应对常见问题的预案,依据预案制定相关的自动化、一键化故障恢复流程,减少故障恢复过程中的人为误操作因素。

四、可用性的量化

在这里插入图片描述

平均故障间隔时间(MTBF)

指所有两次故障之间的uptime时间的均值,说人话就是,所有服务可用时间段的平均值。它的计算结果是一个时间段T,表示系统每隔大约T时间,就会出现故障。设出现故障间隔区间有m个,则有:
M T B F = ∑ i = 1 m T u p m MTBF = \frac {\sum_{i=1}^{m} Tup} {m} MTBF=mi=1mTup

平均修复间隔时间(MTTR)

指所有故障修复时间的均值,计算结果也是一个时间段T,表示系统的每次故障持续事件为T。设出现故障的区间有n个,则有:
M T T R = ∑ i = 1 n T d o w n n MTTR = \frac {\sum_{i=1}^{n} Tdown} {n} MTTR=ni=1nTdown

可用性计算公式

通常可用性用以下公式计算而来:
A = M T B F M T B F + M T T R A = \frac { MTBF } { MTBF+MTTR } A=MTBF+MTTRMTBF
其中可以将A看做一个可用性的百分比值,比值中前导9的个数,即平常经常能听到的,可用性为几个9,比如A = 99.93%,那么可用性就是3个9,同理,对于几个9的阐述,也需要结合对SLA明确定义的上下文来看。

可用性计算示例

以一个实例来说明,假设有这样一个系统,其运行情况如下:

  • 可用区间:[0,30), [32,95), [98,173)
  • 不可用区间:[30,32), [95, 98)

那么根据MTBF、MTTR公式可得:
M T B F = ( 30 + 63 + 75 ) / 3 = 168 / 3 = 56 M T T R = ( 2 + 3 ) / 2 = 5 / 2 = 2.5 MTBF = (30+63+75)/3 = 168/3 = 56 \\ MTTR = (2+3)/2 = 5/2 = 2.5 MTBF=(30+63+75)/3=168/3=56MTTR=(2+3)/2=5/2=2.5

则可用性A为
A = 56 / ( 56 + 2.5 ) = 95.72 % A = 56/(56+2.5) = 95.72\% A=56/(56+2.5)=95.72%

根据计算在173时间单位内,仅有5个时间单位出现故障的话,可用性仅有1个9,可见将可用性提升至4个、5个9,还是相当困难的,它会对系统的可靠性、故障检测、故障恢复等多方面提出非常高的要求。

Conclusion

本文总结了构建高可用系统需要关注的一些基本概念和要素。对于构建高可用系统,一般的过程如下:

  1. 首先就需要确定可衡量的可用性定义,这是与上下游协商的结果,协商的内容包括我们提供的服务在什么状态下是可用的,在什么状态下不可用,这一步决定了构成MTBF、MTTR的关键指标。

  2. 在确定了关键指标定义后,需要围绕我们的服务,建立相关指标的收集与统计机制,比如用sar来收集系统信息,用prometheus监控服务内指标,如上游响应时长,关键逻辑耗时等。这些将作为计算可用性的来源数据。

  3. 还需要建设关键指标的检测和告警系统,以及自动化/半自动化的故障恢复工具,通过缩短故障的恢复时间提升系统可靠性。

  4. 最后要建立长效的故障学习和复盘制度,通过正面反馈,优化服务自身的可靠性、完善系统面对故障时的预案,形成良性闭环。

以上就是对可用性的一些基本概念的介绍,但是可用性上可以探讨的内容很多,虽然这部分内容对于开发同学可能比较枯燥,但作为偏工程属性的工程师,可用性基本概念还是需要了解的,否则自己开发的系统也就无可用性可言。

文献

1.High availability by Wiki
2.Reliability and availability basics
3.关于高可用的系统 by coolshell

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值