1 求取Top1的数据
需求:
求出每一个订单中成交金额最大的一笔交易
订单id 商品id 成交金额
Order_0000005 Pdt_01 222.8
Order_0000005 Pdt_05 25.8
Order_0000002 Pdt_03 322.8
Order_0000002 Pdt_04 522.4
Order_0000002 Pdt_05 822.4
Order_0000003 Pdt_01 222.8
代码:
自定义一个javaBean,命名为OrderBean
package cn.itcast.demo5;
import org.apache.hadoop.io.WritableComparable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
public class OrderBean implements WritableComparable<OrderBean> {
//定义orderId和price变量
private String orderId;
private Double price;
/**
* 重写compareTo方法
*
* @param o
* @return
*/
@Override
public int compareTo(OrderBean o) {
//先对orderId进行比较,如果相同,将它们的price放一起比较,不同就不比较
int result = this.orderId.compareTo(o.orderId);
//进行判断
if (result == 0) {
int i = this.price.compareTo(o.price);
return -i; //返回i求取最小值,返回-i求取最大值
}
return result;
}
@Override
public void write(DataOutput out) throws IOException {
out.writeUTF(orderId);
out.writeDouble(price);
}
@Override
public void readFields(DataInput in) throws IOException {
this.orderId = in.readUTF();
this.price = in.readDouble();
}
//生成get(),set()方法
public String getOrderId() {
return orderId;
}
public void setOrderId(String orderId) {
this.orderId = orderId;
}
public double getPrice() {
return price;
}
public void setPrice(Double price) {
this.price = price;
}
//生成toString()方法
@Override
public String toString() {
return orderId + "\t" + price;
}
}
定义一个Mapper类
package cn.itcast.demo5;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class GroupMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//分割获取到的数据
String[] split = value.toString().split("\t");
//创建orderBean对象
OrderBean orderBean = new OrderBean();
//给orderId赋值
orderBean.setOrderId(split[0]);
//给price赋值
orderBean.setPrice(Double.valueOf(split[2]));
context.write(orderBean, NullWritable.get());
}
}
自定义分区(Partition)规则
package cn.itcast.demo5;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Partitioner;
public class GroupPartitioner extends Partitioner<OrderBean, NullWritable> {
/**
* 重写分区方法
*
* @param orderBean
* @param nullWritable
* @param i
* @return
*/
@Override
public int getPartition(OrderBean orderBean, NullWritable nullWritable, int i) {
//参照HashPartitioner的重写方法
return (orderBean.getOrderId().hashCode() & Integer.MAX_VALUE) % i;
}
}
自定义分组(groupingComparator)规则
package cn.itcast.demo5;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
public class GroupComparator extends WritableComparator {
//重写无参构造方法,定义反射出来的对象是OrderBean类
public GroupComparator() {
super(OrderBean.class, true);
}
@Override
public int compare(WritableComparable a, WritableComparable b) {
OrderBean first = (OrderBean) a;
OrderBean second = (OrderBean) b;
//比较orderId,如果相同就认为是同一组数据
return first.getOrderId().compareTo(second.getOrderId());
}
}
定义一个Reducer类
package cn.itcast.demo5;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class GroupReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable> {
/**
* 直接将收到的k2,v2的值转换为k3,v3输出
*
* @param key
* @param values
* @param context
* @throws IOException
* @throws InterruptedException
*/
@Override
protected void reduce(OrderBean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
context.write(key, values.iterator().next());
}
}
main函数入口
package cn.itcast.demo5;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class GroupMain extends Configured implements Tool {
@Override
public int run(String[] args) throws Exception {
//获取Job对象
Job job = Job.getInstance(super.getConf(), "myGroupComparator");
//输入数据,设置输入路径
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat.setInputPaths(job, new Path("file:///G:\\orders.txt"));
//自定义Map逻辑
job.setMapperClass(GroupMapper.class);
//设置k2,v2输出类型
job.setMapOutputKeyClass(OrderBean.class);
job.setMapOutputValueClass(NullWritable.class);
//自定义Partition逻辑
job.setPartitionerClass(GroupPartitioner.class);
//自定义分组逻辑
job.setGroupingComparatorClass(GroupComparator.class);
//自定义reduce逻辑
job.setReducerClass(GroupReducer.class);
//设置k3,v3输出类型
job.setOutputKeyClass(OrderBean.class);
job.setOutputValueClass(NullWritable.class);
//输出数据,设置输出路径
job.setOutputFormatClass(TextOutputFormat.class);
TextOutputFormat.setOutputPath(job, new Path("file:///G:\\output_top1"));
//提交任务至集群
boolean b = job.waitForCompletion(true);
return b ? 0 : 1;
}
public static void main(String[] args) throws Exception {
int run = ToolRunner.run(new Configuration(), new GroupMain(), args);
System.exit(run);
}
}
运行结果:
Order_0000002 822.4
Order_0000003 222.8
Order_0000005 222.8
2 求取TopN的数据
需求:
求取Top1运用了GroupBy的规则,排序后,不需要再进行操作,就会自动输出首个数据
如果要获取TopN的数据就需要在Reduce逻辑中添加循环遍历,所有的NullWritable转换为DoubleWritable,其他都不变
代码实现:
自定义一个javaBean,命名为OrderBean
package cn.itcast.demo6;
import org.apache.hadoop.io.WritableComparable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
public class OrderBean implements WritableComparable<OrderBean> {
//定义orderId和price变量
private String orderId;
private Double price;
/**
* 重写compareTo方法
*
* @param o
* @return
*/
@Override
public int compareTo(OrderBean o) {
//先对orderId进行比较,如果相同,将它们的price放一起比较,不同就不比较
int result = this.orderId.compareTo(o.orderId);
//进行判断
if (result == 0) {
int i = this.price.compareTo(o.price);
return -i; //返回i求取最小值,返回-i求取最大值
}
return result;
}
@Override
public void write(DataOutput out) throws IOException {
out.writeUTF(orderId);
out.writeDouble(price);
}
@Override
public void readFields(DataInput in) throws IOException {
this.orderId = in.readUTF();
this.price = in.readDouble();
}
//生成get(),set()方法
public String getOrderId() {
return orderId;
}
public void setOrderId(String orderId) {
this.orderId = orderId;
}
public double getPrice() {
return price;
}
public void setPrice(Double price) {
this.price = price;
}
//生成toString()方法
@Override
public String toString() {
return orderId + "\t" + price;
}
}
定义一个Mapper类
package cn.itcast.demo6;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class GroupMapper extends Mapper<LongWritable, Text, OrderBean, DoubleWritable> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//分割获取到的数据
String[] split = value.toString().split("\t");
//创建orderBean对象
OrderBean orderBean = new OrderBean();
//给orderId赋值
orderBean.setOrderId(split[0]);
//给price赋值
orderBean.setPrice(Double.valueOf(split[2]));
DoubleWritable doubleWritable = new DoubleWritable(Double.valueOf(split[2]));
context.write(orderBean, doubleWritable);
}
}
自定义分区(Partition)规则
package cn.itcast.demo6;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Partitioner;
public class GroupPartitioner extends Partitioner<OrderBean, DoubleWritable> {
/**
* 重写分区方法
*
* @param orderBean
* @param doubleWritable
* @param i
* @return
*/
@Override
public int getPartition(OrderBean orderBean, DoubleWritable doubleWritable, int i) {
//参照HashPartitioner的重写方法
return (orderBean.getOrderId().hashCode() & Integer.MAX_VALUE) % i;
}
}
自定义分组(groupingComparator)规则
package cn.itcast.demo6;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
public class GroupComparator extends WritableComparator {
//重写无参构造方法,定义反射出来的对象是OrderBean类
public GroupComparator() {
super(OrderBean.class, true);
}
@Override
public int compare(WritableComparable a, WritableComparable b) {
OrderBean first = (OrderBean) a;
OrderBean second = (OrderBean) b;
//比较orderId,如果相同就认为是同一组数据
return first.getOrderId().compareTo(second.getOrderId());
}
}
定义一个Reducer类
package cn.itcast.demo6;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class GroupReducer extends Reducer<OrderBean, DoubleWritable, OrderBean, DoubleWritable> {
/**
* 直接将收到的k2,v2的值转换为k3,v3输出
*
* @param key
* @param values
* @param context
* @throws IOException
* @throws InterruptedException
*/
@Override
protected void reduce(OrderBean key, Iterable<DoubleWritable> values, Context context) throws IOException, InterruptedException {
int i = 0;
for (DoubleWritable value : values) {
i++;
if (i <= 2) {
context.write(key, value);
} else {
break;
}
}
}
}
main函数入口
package cn.itcast.demo6;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class GroupMain extends Configured implements Tool {
@Override
public int run(String[] args) throws Exception {
//获取Job对象
Job job = Job.getInstance(super.getConf(), "myGroupComparator");
//输入数据,设置输入路径
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat.setInputPaths(job, new Path("file:///G:\\orders.txt"));
//自定义Map逻辑
job.setMapperClass(GroupMapper.class);
//设置k2,v2输出类型
job.setMapOutputKeyClass(OrderBean.class);
job.setMapOutputValueClass(DoubleWritable.class);
//自定义Partition逻辑
job.setPartitionerClass(GroupPartitioner.class);
//自定义分组逻辑
job.setGroupingComparatorClass(GroupComparator.class);
//自定义reduce逻辑
job.setReducerClass(GroupReducer.class);
//设置k3,v3输出类型
job.setOutputKeyClass(OrderBean.class);
job.setOutputValueClass(DoubleWritable.class);
//输出数据,设置输出路径
job.setOutputFormatClass(TextOutputFormat.class);
TextOutputFormat.setOutputPath(job, new Path("file:///G:\\output_top2"));
//提交任务至集群
boolean b = job.waitForCompletion(true);
return b ? 0 : 1;
}
public static void main(String[] args) throws Exception {
int run = ToolRunner.run(new Configuration(), new GroupMain(), args);
System.exit(run);
}
}
运行结果:
Order_0000002 822.4 822.4
Order_0000002 522.4 522.4
Order_0000003 222.8 222.8
Order_0000005 222.8 222.8
Order_0000005 25.8 25.8