Hadoop离线_flume的三个采集案例

flume的三个采集案例


案例一

1.需求:
某服务器的某特定目录下,会不断产生新的文件,每当有新文件出现,就需要把文件采集到HDFS中去

2.解决方案:
三大组件的选择:
Source: 选择Spooling Directory Source,配置时写成spooldir
Sink: 选择HDFS Sink,因为是要将文件采集到的HDFS中
Channel: 选择Memory Channel和File Channel都可以

spooldir的特性:
1.监视一个目录,只要目录中出现新文件,就会采集文件中的内容
2.采集完成的文件,会被agent自动添加一个后缀:COMPLETED
3.所监视的目录中不允许重复出现相同文件名的文件

3.flume配置文件开发
1.先建立一个供我们监控的文件夹mkdir -p /export/servers/dirfile
2.到flume的conf文件夹下新建配置文件:vim spooldir.conf

# 定义Agent各个组件的名字
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# 描述和配置source组件
##注意:不能往监控目录中重复丢同名文件
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /export/servers/dirfile
a1.sources.r1.fileHeader = true

# 描述和配置sink组件
a1.sinks.k1.type = hdfs
a1.sinks.k1.channel = c1
a1.sinks.k1.hdfs.path = hdfs://node01:8020/spooldir/files/%y-%m-%d/%H%M/
a1.sinks.k1.hdfs.filePrefix = events-
# 文件的采集策略,这样可以控制flume采集数据的频率,避免在HDFS上产生大量小文件
# 文件多长时间采集一次
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 10
a1.sinks.k1.hdfs.roundUnit = minute
# 文件多大采集一次
a1.sinks.k1.hdfs.rollInterval = 3
a1.sinks.k1.hdfs.rollSize = 20
a1.sinks.k1.hdfs.rollCount = 5
a1.sinks.k1.hdfs.batchSize = 1
a1.sinks.k1.hdfs.useLocalTimeStamp = true
#生成的文件类型,默认是Sequencefile,可用DataStream,则为普通文本
a1.sinks.k1.hdfs.fileType = DataStream

# 描述和配置channel组件,此处使用是内存缓存的方式
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# 描述和配置source  channel   sink之间的连接关系
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

4.启动配置文件:
bin/flume-ng agent -c ./conf -f ./conf/spooldir.conf -n a1 -Dflume.root.logger=INFO,console
往目录/export/servers/dirfile下传输文件即可实现传输


案例二

1.需求
业务系统使用log4j生成的日志,日志内容不断增加,需要把追加到日志文件中的数据实时采集到HDFS

2.解决方案:
选择组件
Source: 选择Exec Source,配置时写成exec
Sink: 选择HDFS Sink
Channel: 选择Memory Channel和File Channel都可以

3.配置文件的开发:
到Flume的conf文件夹下,新建配置文件vim tail-file.conf

# 定义agent各个组件名字
agent1.sources = source1
agent1.sinks = sink1
agent1.channels = channel1

# 描述并配置tail -F source1 (拦截器,暂时不用)
agent1.sources.source1.type = exec
agent1.sources.source1.command = tail -F /export/servers/taillogs/access_log
agent1.sources.source1.channels = channel1

# 配置source1主机
#agent1.sources.source1.interceptors = i1
#agent1.sources.source1.interceptors.i1.type = host
#agent1.sources.source1.interceptors.i1.hostHeader = hostname

# 描述并配置sink1
agent1.sinks.sink1.type = hdfs
#a1.sinks.k1.channel = c1
agent1.sinks.sink1.hdfs.path = hdfs://node01:8020/weblog/flume-collection/%y-%m-%d/%H-%M
agent1.sinks.sink1.hdfs.filePrefix = access_log
agent1.sinks.sink1.hdfs.maxOpenFiles = 5000
agent1.sinks.sink1.hdfs.batchSize= 100
agent1.sinks.sink1.hdfs.fileType = DataStream
agent1.sinks.sink1.hdfs.writeFormat =Text
agent1.sinks.sink1.hdfs.rollSize = 102400
agent1.sinks.sink1.hdfs.rollCount = 1000000
agent1.sinks.sink1.hdfs.rollInterval = 60
agent1.sinks.sink1.hdfs.round = true
agent1.sinks.sink1.hdfs.roundValue = 10
agent1.sinks.sink1.hdfs.roundUnit = minute
agent1.sinks.sink1.hdfs.useLocalTimeStamp = true

# 描述和配置channel组件,此处使用是内存缓存的方式
agent1.channels.channel1.type = memory
agent1.channels.channel1.keep-alive = 120
agent1.channels.channel1.capacity = 500000
agent1.channels.channel1.transactionCapacity = 600

# 描述和配置source  channel   sink之间的连接关系
agent1.sources.source1.channels = channel1
agent1.sinks.sink1.channel = channel1

4.启动配置文件:
bin/flume-ng agent -c ./conf -f ./conf/tail-file.conf -n agent1 -Dflume.root.logger=INFO,console


案例三

1.需求:
第一个agent负责收集文件当中的数据,通过网络发送到第二个agent当中去,
第二个agent负责接收第一个agent发送的数据,并将数据保存到hdfs上面去

2.解决方案:
用node02做第一个agent
用node03做第二个agent
在node02的配置:
数据源组件: Source,选择Exec Source,因为第一个agent的作用是收集文件当中的数据
下沉组件: Sink,选择Avro Sink,Avro Sink主要就是用来做多级agent的串联
通道组件:Channel,选择Memory Channel
在node03的配置:
数据源组件: Source,选择Avro Source,因为第一个agent的下沉为Avro Sink,所以接收上一个agent的数据就应该用Avro Source
下沉组件: Sink,选择HDFS Sink,因为最后把数据保存到HDFS上去
通道组件:Channel,选择Memory Channel

3.配置文件的开发:
在node02先开发flume配置文件
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/conf
vim tail-avro-avro-logger.conf

# 命名agent各个组件
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# 描述和配置source组件
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /export/servers/taillogs/access_log
a1.sources.r1.channels = c1

# 描述和配置sink组件
##sink端的avro是一个数据发送者
a1.sinks = k1
a1.sinks.k1.type = avro
a1.sinks.k1.channel = c1
a1.sinks.k1.hostname = 192.168.0.30
a1.sinks.k1.port = 4141
a1.sinks.k1.batch-size = 10

# 描述和配置channel组件
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# 描述和配置source channel sink之间的连接关系
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

再在node03开发flume配置文件
cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/conf
vim avro-hdfs.conf

# 命名agent的各个组件
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# 描述和配置source组件
##source中的avro组件是一个接收者服务
a1.sources.r1.type = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 192.168.0.30
a1.sources.r1.port = 4141

# 描述sink组件
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = hdfs://node01:8020/avro/hdfs/%y-%m-%d/%H%M/
a1.sinks.k1.hdfs.filePrefix = events-
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 10
a1.sinks.k1.hdfs.roundUnit = minute
a1.sinks.k1.hdfs.rollInterval = 3
a1.sinks.k1.hdfs.rollSize = 20
a1.sinks.k1.hdfs.rollCount = 5
a1.sinks.k1.hdfs.batchSize = 1
a1.sinks.k1.hdfs.useLocalTimeStamp = true
#生成的文件类型,默认是Sequencefile,可用DataStream,则为普通文本
a1.sinks.k1.hdfs.fileType = DataStream

# 使用memory channel来缓存events
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# 将source和sink通过channel绑定
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

4.启动配置文件:
在node03启动flume配置文件
bin/flume-ng agent -c conf -f conf/avro-hdfs.conf -n a1 -Dflume.root.logger=INFO,console
在node02启动flume配置文件
bin/flume-ng agent -c conf -f conf/tail-avro-avro-logger.conf -n a1 -Dflume.root.logger=INFO,console

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值