志存高远脚踏实地
码龄6年
关注
提问 私信
  • 博客:249,073
    动态:1
    249,074
    总访问量
  • 55
    原创
  • 1,398,266
    排名
  • 62
    粉丝
  • 0
    铁粉

个人简介:性格处事方面:<br>1.吃苦耐劳,在校期间,除了大一的寒假,假期都没有离校,在校期间除正常上课休息时间外一直在老师的课题组,日均学习时间13小时左右。<br>2.执行力强,大事匀着做,小事及时完成。<br>3.抗压能力较强,能够不断自我激励。<br>4.能够对自己的工作积极负责,能够及时和老师或上级沟通交流,提出自己的见解和想法,及时给与反馈,汇报自己的工作进度以及遇到的问题和解决办法<br>技能方面:<br>1.熟悉TensorFlow,sklearn等常用框架,熟悉逻辑回归、线性回归、SVM、决策树、随机森林等常用机器学习算法算法。<br>2.熟悉RNN,CNN等常用神经网络算法。<br>3.能够阅读英文文献。<br>4.工程经验有待提高

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山西省
  • 加入CSDN时间: 2019-01-08
博客简介:

高志远的博客

博客描述:
志存高远,脚踏实地!
查看详细资料
个人成就
  • 获得275次点赞
  • 内容获得17次评论
  • 获得1,095次收藏
  • 代码片获得560次分享
创作历程
  • 55篇
    2019年
成就勋章
TA的专栏
  • Python
    24篇
  • 机器学习
    24篇
  • Opencv
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

支持向量机SVM——最大间隔分离超平面的计算、拉格朗日乘数法求解不等式约束的优化问题

支持向量机SVM——最大间隔分离超平面的计算如何定义两个集合的最优分隔超平面呢?找到集合"边界"上的若干点,以这些点为基础计算超平面的方向,以二维坐标平面为例子wTx+b=0w^Tx+b=0wTx+b=0,当系数wTw^TwT确定的时候,这个超平面的方向也就随之确定,以两个结果边界上的点的平均作为超平面的"截距"。SVM线性分类问题假设给定一个特征空间上的训练数据集T=(x1,t1)...
原创
发布博客 2019.08.29 ·
10856 阅读 ·
10 点赞 ·
0 评论 ·
64 收藏

支持向量机SVM——支撑超平面、支撑(支持)向量、分割超平面、最大间隔分离超平面

支持向量机SVM前提概念首先从字面的意思来看一下支持向量机,机即machine,也就是算法,那么什么是支持向量呢?支持向量支持的是什么呢?看一下以下几个概念支撑超平面:设有一个集合C,x0C,x_0C,x0​为CCC边界上的点。若存在a≠0,a
eq0,a̸​=0,满足对于任意的x∈Cx\in Cx∈C,都有aTx≤aTx0a^Tx\le a^Tx_0aTx≤aTx0​成立,则称超平面...
原创
发布博客 2019.08.29 ·
5614 阅读 ·
5 点赞 ·
0 评论 ·
15 收藏

贝叶斯算法、正向概率、逆向概率、先验概率、后验概率、单词拼写纠错实例

贝叶斯算法贝叶斯算法起源于解决逆向概率问题,那么什么叫逆向概率问题呢?在说逆向概率问题之前先看一下什么是正向概率问题。正向概率问题举个栗子:假设一个袋子里有N个白球和N个黑球,伸进手随机摸一个,摸出黑球的概率是多大呢?显然摸出黑球的概率是12\begin{aligned}\frac{1}{2}\end{aligned}21​​,这就是正向概率问题。与之对应的就是逆向概率问题。逆向概率问题...
原创
发布博客 2019.08.28 ·
3892 阅读 ·
5 点赞 ·
0 评论 ·
18 收藏

使用线性回归、逻辑回归、决策树、随机森林进行泰坦尼克救援预测

泰坦尼克救援预测from IPython.display import ImageImage(filename=r'C:\Users\a\Desktop\暑假\Titantic\QQ截图20190827081938.png',width=800)第一步:数据分析import pandas as pdimport numpy as npimport matplotlib.pyplot...
原创
发布博客 2019.08.27 ·
1582 阅读 ·
3 点赞 ·
0 评论 ·
31 收藏

集成学习Bagging与Boosting的区别

集成学习Bagging与Boosting的区别Bagging的训练集是随机的,以独立同分布选取的子集训练分类器,而Boosting训练集的选择不是独立的,每一次选择的训练集都依赖于上一次学习的结果,也就是在上一次学习完成之后会更新每个样本的权重,也就是新的样本分布。Bagging的每个预测函数没有权重,而Boosting根据每一次训练的训练误差得到该次预测函数的权重。Bagging的各个预...
原创
发布博客 2019.08.26 ·
890 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

集成学习(Ensemble learning)的Boosting模型、最初的Boosting、Adaboost

集成学习(Ensemble learning)的Boosting模型Boosting模型最初的Boosting重复地从一个样本集合D中采样n个样本针对每次采样的子样本集,进行统计学习,获得假设HiH_iHi​将若干个假设进行组合,形成最终的假设HfinalH_{final}Hfinal​将最终的假设用于具体的分类任务但是这样的模型只是将原有的弱分类器进行了简单的组合,就是将弱分类...
原创
发布博客 2019.08.26 ·
785 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

集成学习(Ensemble learning)的Bagging模型、随机森林、随机森林的Feature Importance

集成学习(Ensemble learning)的Bagging模型Bagging模型(Bootstrap Aggregation)如下图:本质上就是并行训练几个分类器,Bagging是通过组合随机生成的训练集而改进分类的集成算法。Bagging每次训练的数据集是从原始数据集中有放回地随机采样,每一个训练样本在某个训练集中出现的次数n≥0n\ge0n≥0,经过N次的训练后,就得到H1....HN...
原创
发布博客 2019.08.26 ·
1398 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

集成学习算法的思想、通过集成学习提高整体泛化能力的前提条件、如何得到独立的分类器Bagging、Boosting、Stacking算法

集成学习算法Ensemble learning algorithm目的:让机器学习的效果更好,单个的分类器如果表现的好,那么能不能通过使用多个分类器使得分类效果更好呢?或者如果单个分类器分类效果不如人意,那么是否能够通过使用多个分类器来进一步提升分类效果呢?通过集成学习可以提高整体的泛化能力,但是这种提高是有前提条件的。通过集成学习提高整体泛化能力的前提条件:分类器之间是有差异的每个...
原创
发布博客 2019.08.25 ·
2893 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

使用Graphviz决策树可视化展示,将DataFrame数据保存到本地

决策树可视化展示准备数据集本次使用sklearn的内置数据集import matplotlib.pyplot as pltimport pandas as pdfrom sklearn.datasets.california_housing import fetch_california_housing #导入内置数据集house_price = fetch_california_ho...
原创
发布博客 2019.08.25 ·
2645 阅读 ·
3 点赞 ·
2 评论 ·
5 收藏

决策树预剪枝与后剪枝的区别和优缺点

预剪枝与后剪枝的区别和优缺点为什么要进行剪枝?预剪枝和后剪枝的方法和策略参考我的博文预剪枝预剪枝会使得决策树的很多分支没有展开,也就是没有继续分类下去,这不仅降低了过拟合的风险,还显著减少了决策树的训练时间开销和测试时间开销。但是另一方面,有些分支的当前划分虽不能提升泛化性能、甚至可能导致泛化性能暂时下降,但是在其基础上进行的后续划分有可能导致性能显著提升。预剪枝基于’贪心’本质,也就是...
原创
发布博客 2019.08.24 ·
11171 阅读 ·
7 点赞 ·
1 评论 ·
17 收藏

决策树为什么要进行剪枝处理和决策树的剪枝策略,以及后剪枝方法——代价复杂度(CCP)算法剪枝系数的计算

决策树的剪枝处理为什么要进行决策树的剪枝处理呢?决策树的过拟合的风险很大,因为理论上来说可以将数据完全分的开,如果树足够大,每个叶子节点就剩下了一个数据。那么,这就会造成模型在训练集上的拟合效果很好,但是泛化能力很差,对新样本的适应能力不足。所以,对决策树进行剪枝,可以降低过拟合的风险。决策树的剪枝策略决策树的剪枝策略分为预剪枝和后剪枝预剪枝预剪枝就是边建立决策时边进行剪枝的操作。...
原创
发布博客 2019.08.24 ·
4470 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

决策树CART算法、基尼系数的计算方法和含义

决策树CART算法——基尼系数决策树的CART算法使用基尼系数来选择划分属性。一个数据集的纯度可以用基尼系数来度量Gini(D)=∑k=1∣y∣∑k′≠kpkpk′=1−∑k=1∣y∣pk2\begin{aligned}Gini(D) = \sum_{k=1}^{|y|}\sum_{k&#x27;
e k}p_kp_{k&#x27;} = 1-\sum_{k=1}^{|y|}...
原创
发布博客 2019.08.24 ·
11024 阅读 ·
3 点赞 ·
0 评论 ·
30 收藏

决策树——ID3算法存在的问题实例详解,以及C4.5算法信息增益率的计算实例

ID3算法存在的问题例如在原始数据中加入一列ID,如下图那么如果以ID为一个节点,那么最后的每个叶子节点中只有一个数据,那么每个叶子节点的熵值都为0,那么此时的信息增益将达到最大,但是这显然不是我们想要的分类结果,这样的分类结果就好像最终得到的每一个分类数据都是按照自己的规则得到的,而我们想要的是根据大部分数据都具有的特征分类,根据一些通用规则而不是特有规则。按照这样特有的规则分类的结果显然...
原创
发布博客 2019.08.24 ·
6009 阅读 ·
5 点赞 ·
1 评论 ·
37 收藏

决策树算法如何切分特征如何选择节点、信息增益、熵值计算

决策树算法决策树树模型决策树:从根节点开始一步步走到叶子节点(这一过程叫做决策的过程,叶子节点就是决策)。所有的数据最终都会落到叶子节点,既可以做分类,也可以做回归。例如下面的图示就是一个决策的过程。根节点:第一个选择的节点。非叶子节点与分支:中间的决策过程叶子节点:最终的决策结果。节点:没增加一个节点相当于在数据中切一刀,将数据分类。决策树的训练于测试训练阶段:从给定的训...
原创
发布博客 2019.08.23 ·
9942 阅读 ·
14 点赞 ·
1 评论 ·
43 收藏

为什么要引入正则化惩罚项?L1正则与L2正则的推导、作用以及区别

正则化惩罚项,L1L1L1和L2L2L2正则Regularize penalty items L1L1L1 and L2L2L2为什么要引入正则化惩罚项?在训练数据不够多时,或者过度训练模型(overtrainingovertrainingovertraining)时,常常会导致过拟合(overfittingoverfittingoverfitting)。正则化方法即为在此时向原始模型引入...
原创
发布博客 2019.08.22 ·
4362 阅读 ·
4 点赞 ·
0 评论 ·
36 收藏

数据分布不均衡处理——SMOTE算法过采样Over sampling

数据分布不均衡处理——SMOTE算法过采样OversamplingOver\quad samplingOversampling什么是过采样?过采样就是在原始数据分布不均衡时,使用算法,人工生成一部分数据出来,然后对这些新生成的数据随机采样,使得原始数据中少数集的数量最终和多数集的数量相同。如下图,可以看到类别为0的数据的数量远远多于类别为1的数据的数量。SMOTE算法的基本思想对于少...
原创
发布博客 2019.08.21 ·
3808 阅读 ·
2 点赞 ·
1 评论 ·
20 收藏

机器学习——下采样(under-sampling)

下采样(under-sampling)什么是下采样?当原始数据的分类极不均衡时,如下图我们要想用这样的数据去建模显然是存在问题的。尤其是在我们更关心少数类的问题的时候数据分类不均衡会更加的突出,例如,信用卡诈骗、病例分析等。在这样的数据分布的情况下,运用机器学习算法的预测模型可能会无法做出准确的预测,最后的模型显然是趋向于预测多数集的,少数集可能会被当做噪点或被忽视,相比多数集,少数集被...
原创
发布博客 2019.08.21 ·
88640 阅读 ·
54 点赞 ·
3 评论 ·
268 收藏

机器学习之逻辑回归Logistic Regression原理实现升学预测——Python代码实现

Logistic Regression目标: 建立一个逻辑回归模型,通过一个人的两门考试成绩来预测能否被该学校录取,最后计算准确率。下面是本次使用的数据,如有需要学习请留言准备数据#导入模块import pandas as pdimport matplotlib.pyplot as pltimport numpy as np#读取数据data = pd.read_csv('da...
原创
发布博客 2019.08.18 ·
2324 阅读 ·
4 点赞 ·
6 评论 ·
36 收藏

逻辑回归Logistic Regression——二分类原理推导

逻辑回归原理推导——Logistic Regression逻辑回归是经典的二分类算法,逻辑回归的决策边界是非线性的。例如下面的两种分类前者是线性的,后者是非线性的。实际分类中经常是先用逻辑回归分类,再用其他分类如支持向量机等,逻辑回归是比较简单的分类算法,先用逻辑回归再用其他复杂的分类算法查看分类效果,决定是否有必要使用其他分类算法。分类时候我们想要的当然是某一个样本属于AAA还是属...
原创
发布博客 2019.08.16 ·
3645 阅读 ·
2 点赞 ·
0 评论 ·
16 收藏
加载更多