Steam流详解

steam流

Java8 API添加了一个新的抽象称为流 Stream ,可以让
你以一种声明的方式处理数据。
Stream 使用一种类似用 SQL 语句从数据库查询数据的直
观方式来提供一种对 Java 集合运算和表达的高阶抽
象。Stream API可以极大提高Java程序员的生产力,让
程序员写出高效率、干净、简洁的代码。这种风格将要
处理的元素集合看作一种流, 流在管道中传输, 并且可
以在管道的节点上进行处理, 比如筛选, 排序,聚合
等。
1. Stream的操作三个步骤
1、创建Stream
一个数据源(如:集合、数组),获取一个流
2、中间操作
一个中间操作链,对数据源的数据进行处理
3、终止操作
一个终止操作,执行中间操作链,并产生结果
1.1. 创建Stream

public class TestStreamAPI1 {
  // 创建Stream
  public void test1() {
    // 1、可以通过Conllection系列集合提供的顺序stream()或并行流parallelStream()
    List<String> list = new ArrayList<>();
    Stream<String> stream1 =
list.stream();
    stream1 = list.parallelStream();
    // 2、通过Arrays中的静态方法stream()获取数
据流
    Integer ints[] = new Integer[10];
    Stream<Integer> stream2 =
Arrays.stream(ints);
    // 3、通过Stream类中的静态方法of()
    Stream<String> stream3 =
Stream.of("aa", "bb", "cc");
    String str[] = new String[10];
    Stream<String> stream4 =
Stream.of(str)
 }
}

1.2. Stream的中间操作
1.2.1. 筛选和切片
filter

List<Employee> emps = Arrays.asList(
  new Employee("张三", 18, 3333.33),
  new Employee("李四", 38, 4444.44),
  new Employee("王五", 50, 5555.55),
  new Employee("赵六", 16, 6666.66),
  new Employee("田七", 28, 7777.77)
);
// filter-接收Lambda,从流中排除某些元素
public void test1() {
  Stream<Employee> stream = emps.stream()
   .filter((e) -> {
      System.out.println("StreamAPI的中间
操作");
      return e.getAge() > 35;
   });
  // 终止操作:一次性执行全部内容,即“惰性求值”
  stream.forEach(System.out::println);
}

limit

// limit-截断流,使其元素不超过给定数量
public void test2() {
  emps.stream()
   .filter((e) -> e.getSalary() > 5000)
   .limit(2)
   .forEach(System.out::println);
}

skip

// skip-跳过元素,返回一个扔掉了前n个元素的流,若流中
元素不足n个,则返回一个空流。
public void test3() {
  emps.stream()
   .filter((e) -> e.getSalary() > 5000)
   .skip(2)
   .forEach(System.out::println);
}

distinct

// distinct-筛选,通过流所生产元素的hashCode()和
equals()去除重复元素
public void test4() {
  emps.stream()
   .filter((e) -> e.getSalary() > 5000)
   .distinct()
   .forEach(System.out::println);
}

1.2.2. 排序
sorted(Comparable)-自然排序

// sorted(Comparable)-自然排序
public void test1() {
  List<String> list = Arrays.asList("cc",
"aa", "bb", "ee", "dd");
  list.stream()
   .sorted()
   .forEach(System.out::println);
}

sorted(Comparator)-定制排序

// sorted(Comparator)-定制排序
// 需求:按年龄排序,年龄一样按姓名排序
public void test2() {
  emps.stream()
   .sorted((e1, e2) -> {
    
 if(e1.getAge().equals(e2.getAge())) {
        return
e1.getName().compareTo(e1.getName());
     }else {
        return
e1.getAge().compareTo(e2.getAge());
     }
   }).forEach(System.out::println);
}

1.3. 终止操作
1.3.1. 查找与匹配

public void test1() {
  // allMatch-检查是否匹配所有元素
  boolean b1 = emps.stream()
   .allMatch((e) ->
e.getStatus().equals(Status.BUSY));
  System.out.println(b1);
  // anyMatch-检查是否至少匹配一个元素
    boolean b2 = emps.stream()
   .anyMatch((e) ->
e.getStatus().equals(Status.BUSY));
  System.out.println(b2);
  // noneMatch-检查是否没有匹配所有元素
  boolean b3 = emps.stream()
   .noneMatch((e) ->
e.getStatus().equals(Status.OTHER));
  System.out.println(b3);
  // findFirst-返回第一个元素
  // 需求:按工资排序,获取第一个员工信息
  Optional<Employee> op1 = emps.stream()
   .sorted((e1, e2) ->
Double.compare(e1.getSalary(),
e2.getSalary()))
   .findFirst();
  System.out.println(op1.get());
  // findAny-返回当前流中的任意元素
  // 需求:找一个空闲状态的员工,添加到开发团队中
  Optional<Employee> op2 =
emps.parallelStream()// 并行流-多条线程进行,谁先
找到就是谁
   .filter((e) ->
e.getStatus().equals(Status.FERR))
   .findAny();
  System.out.println(op2.get());
    // count-返回流中元素的总个数
  Long count = emps.stream().count();
  System.out.println(count);
  // max-返回流中最大值
  // 需求:获取工资最高的员工信息
  Optional<Employee> op3 = emps.stream()
   .max((e1, e2) ->
Double.compare(e1.getSalary(),
e2.getSalary()));
  System.out.println(op3.get());
  // min-返回流中最小值
  // 需求:获取公司中工资最少员工的工资
  Optional<Double> op4 = emps.stream()
   .map(Employee::getSalary)
   .min(Double::compare);
  System.out.println(op4.get());
}

1.4. 收集(了解)
收集-将流转换为其他形式,接收一个Collertor接口的实
现,用于给Stream中元素做汇总的方法

// 需求:获取当前公司所有员工的姓名添加到集合中
// List-把流中所有元素收集到List中
List<String> list = emps.stream()
 .map(Employee::getName)
 .collect(Collectors.toList());
list.forEach(System.out::println);
// Set-把流中所有元素收集到Set中,删除重复项
Set<String> set = emps.stream()
 .map(Employee::getName)
 .collect(Collectors.toSet());
set.forEach(System.out::println);
// Map-把流中所有元素收集到Map中,当出现相同的key时会
抛异常
Map<String, Integer> map = emps.stream()
.collect(Collectors.toMap(Employee::getName,
Employee::getAge));
System.out.println(map);
// 员工总数
Long count = emps.stream()
 .collect(Collectors.counting());
System.out.println(count);
// 工资平均数
Double avg = emps.stream()
.collect(Collectors.averagingDouble(Employee::
getSalary));
System.out.println(avg);
// 工资总和
Double sum = emps.stream()
.collect(Collectors.summingDouble(Employee::ge
tSalary));
System.out.println(sum);
// 工资最大值的员工
Optional<Employee> op = emps.stream()
 .collect(Collectors.maxBy((e1, e2) ->
Double.compare(e1.getSalary(),
e2.getSalary())));
System.out.println(op.get());

注意:
1、Stream自己不会存储元素·
2、Stream不会改变源对象。相反,会返回一个持有结果
的新Stream。
3、Stream操作是延迟执行的,这意味着他们会等到需要
结果的时候才执行。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>