使用LRU算法写个cache工具,终于可以存对象了。

本文介绍了一个基于LRU算法实现的简单缓存工具,使用ConcurrentHashMap和ConcurrentLinkedQueue保证线程安全,通过ReadWriteLock优化并发性能。此外,还探讨了第三方缓存库如Guava Cache、Caffeine Cache和EhCache的特点和优势。
摘要由CSDN通过智能技术生成

简单缓存工具

技术背景

LRU(Least Recently Used)缓存是一种常见的缓存算法,它会移除最近最少访问的数据项,以确保缓存空间足够用于新数据。本工具基于LRU算法实现了一个简单的缓存工具,用于存储键值对,并在达到容量限制时淘汰最不常访问的键。

功能需求

  1. 存储键值对并更新访问顺序
  2. 在缓存达到容量限制时,淘汰最不常访问的键
  3. 提供回调函数监听淘汰事件
  4. 支持高并发

技术细节

  •  使用了ConcurrentHashMap作为缓存存储,保证线程安全的Map操作。

  •  使用了ConcurrentLinkedQueue来维护一个按访问顺序排列的键的队列。 保持,当需要移除最久未使用的键时,我们可以直接从队列的头部取出。

  • 使用了ReadWriteLock来允许多个线程读操作并发访问,而写操作则使用独占锁。 这样, 在读操作远多于写操作的场景下, 可以显著提高性能。

  •  ReadWriteLock接口表示一个可以通过获取读锁或写锁来控制读写访问的锁。读锁是共享锁,可以让多个线程同时进行读操作,而写锁是独占锁,只允许一个线程进行写操作。这种读写分离的机制在读操作频繁且写操作较少的情况下能够提高并发性能。

  •  在LRUCache中,通过使用ReadWriteLock,读取操作(get方法)获取读锁,以允许多个线程同时读取缓存数据而不互相干扰。而写操作(put方法)获取写锁,确保在写入新数据或执行淘汰旧数据的操作时,不会同时有其他线程对缓存进行读写操作。

  •   这种读写锁机制可有效减少读操作和写操作之间的竞争,提高了程序的并发性能。

 

技术实现

/**
 * 包名
 */
package com.qcmb.java.utils;


import java.lang.management.ManagementFactory;
import java.lang.management.MemoryMXBean;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
import java.util.function.BiConsumer;

/**
 * 简单缓存工具,基于LRU(Least Recently Used)算法,淘汰最少使用。
 * 具体功能包括存储键值对、获取键对应的值并更新访问顺序,以及根据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值