AI生成藝術(No.3):Paddle的3D點雲GAN模型

本文介绍了使用PaddlePaddle训练3D点云GAN模型的方法,通过ShapeNet数据集进行训练,详细阐述了点云数据结构、GAN的工作原理,并提供了训练过程的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

邁向元宇宙, AI 生成藝術之路 ( N o .3 )

** <<PaddlePaddle的3D点云GAN模型>>**

==1. 說明:簡介 3D 點雲 GAN 模型 ==

⚫ 近幾年,隨著機器學習模型(如 GAN)和大規模 3D 資料集(如 ShapeNet)的出現,三維重建可以不再依賴特徵匹配,而是藉助於 從大數據中學到的形狀先驗知識,來進行重建。
⚫ GAN(生成對抗網路)的潛力在於它可以類比任何資料分配
(Distribution)。由於它是機器學習快速發展的領域之一。例如,在3D ShapeNet 資料集上訓練 GAN 來生成逼真的立體形狀。
⚫ ShapeNet 數據集,是由斯坦福大學、普林斯頓大學和美國芝加哥豐 田技術研究所的研究人員開發的大型 3D CAD 模型存儲庫。該存儲 庫包含超過 3 億個模型,其中 220,000 個模型被分類為使用 WordNet 上位詞-下位詞關係排列的 3,135 個類。 ShapeNet Parts 子集包含 31,693 個網格,分為 16 個常見對像類(即桌子、椅子、 平面等)。每個形狀基本事實包含 2-5 個部分(總共 50 個部分 類)。
在这里插入图片描述
⚫ 通常是給定物件的深度圖,然後將其轉換為體積表示並識別觀察到的 表面、自由空間和遮擋空間。3D ShapeNets 可以識別物體類別,完 成完整的 3D 形狀,並在初始識別不確定的情況下預測下一個最佳視 圖。最後,3D ShapeNets 可以整合新的視圖以與所有視圖聯合識別對象。
在这里插入图片描述
⚫ 點雲(Point cloud)是 3D 幾何圖形表達的主要資料結構。它圖像和視 頻等其他一般視覺資料並不相同。它使用一群不規則點來描述 3D 物 件(Object)的複雜形狀表徵。於是,對事物形狀表(特)徵的學習成為 點雲模型的主要任務。點雲分析成為 3D 場景理解領域中一個基本但 具有挑戰性的問題。例如,對於同一個物體,不同視角所觀察到的部 位是不同的。對於不可見的部位,它的重建質量會略低於可見的部 位。
⚫ 於是,單圖像 3D 形狀重建的關鍵挑戰是確保深度模型可以泛化到不 屬於訓練集的形狀。這很困難,因為算法必須通過利用訓練數據的形 狀特徵來推斷表面的遮擋部分,因此容易受到過度擬合的影響。這種 對看不見的對像類別的概括是架構設計和訓練方法的功能。
在这里插入图片描述
⚫ 近年來,點雲在電力線巡檢、智慧城市、自動駕駛等領域得到廣泛應 用。由於激光掃描技術和機器學習的發展,基於深度學習的點雲處理 方法越來越受到關注。
⚫ 本文的目標是通過 GAN 來處理點雲資料。方法是,基於在大型數據 集(如 ShapeNet)上訓練 GAN 模型。

==2. 準備訓練數據:使用 ShapeNet 數據集 ==
⚫ 將 ShapeNet 數據集的放置於您的工作區
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值