week10-作业

A - 签到题

题意:

东东在玩游戏“Game23”。
在一开始他有一个数字n,他的目标是把它转换成m,在每一步操作中,他可以将n乘以2或乘以3,他可以进行任意次操作。输出将n转换成m的操作次数,如果转换不了输出-1。
Input
输入的唯一一行包括两个整数n和m(1<=n<=m<=5*10^8).
Output
输出从n转换到m的操作次数,否则输出-1.

Simple Input 1
120 51840
Simple Output 1
7
Simple Input 2
42 42
Simple Output 2
0
Simple Input 3
48 72
Simple Output 3
-1

思路:

这是一道数学思路的题型:
判断m除以n的余数是否为0,若不为0直接为-1。
若为0,首先得到商,进行如下循环若b不为1,先判断b余3是否为0,若为0,b=b/3,count++,再进行循环。若不为0,判断b余2是否为0,若为0,b=b/2,count++,再进行循环。否则输出-1,退出循环 。最后输出count操作次数即可。

代码:

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int main()
{
	int n, m;
	cin >> n >> m;
	if (m % n != 0)
	{
		cout << -1;
	}
	else
	{
		int b = m / n;
		int cnt = 0;
		while (b != 1)
		{
			if (b % 3 == 0)
			{
				b = b / 3;
				cnt++;
				continue;
			}
			else if (b % 2 == 0)
			{
				b = b / 2;
				cnt++;
				continue;
			}
			else
			{
				cout << -1 << endl;
				break;
			}
		}
		if (b == 1)
		{
			cout << cnt << endl;
		}
	}
	return 0;
}

B - LIS & LCS

题意:

东东有两个序列A和B。
他想要知道序列A的LIS和序列AB的LCS的长度。
注意,LIS为严格递增的,即a1<a2<…<ak(ai<=1,000,000,000)。
Input
第一行两个数n,m(1<=n<=5,000,1<=m<=5,000)
第二行n个数,表示序列A
第三行m个数,表示序列B
Output
输出一行数据ans1和ans2,分别代表序列A的LIS和序列AB的LCS的长度
Simple Input
5 5
1 3 2 5 4
2 4 3 1 5
Simple Output
3 2


思路:

我们要求n个数的最长上升子序列,可以求前n-1个数的最长上升子序列,再跟第n个数进行判断。求前n-1个数的最长上升子序列,可以通过求前n-2个数的最长上升子序列……直到求前1个数的最长上升子序列,此时LIS当然为1。
lis思路:初始化dp数组=1,对整个A数组进行遍历,其中对正在遍历的A[i] 前面的数组进行遍历,若A[j]<A[i]并且dp[i]<=dp[j],就对当前的dp值加一,最后求出最长的序列即可。
lcs思路:
在这里插入图片描述
假设lcs[i][j]为公共子序列的长度,初始化lcs[1][0],lcs[0][0],lcs[0][1]=0,利用转移方程,当A[i]==B[j]时,lcs[i][j]=lcs[i-1][j-1]+1;否则lcs[i][j]=max(lcs[i-1][j],lcs[i][j-1]),最后输出答案lcs[n][m]即可。

代码:

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
long long A[5050], B[5050];
int n, m;
long long len=0;
long long lis[5050];
long long lcs[5050][5050];
int main()
{
	cin >> n >> m;
	for (int i = 1; i <= n; i++)
	{
		cin >> A[i];
	}
	for (int i = 1; i <= m; i++)
	{
		cin >> B[i];
	}
	for (int i = 1; i <= n; i++)
		lis[i] = 1;
	for (int i = 2; i <= n; i++)
	{
		for (int j = i-1; j >0; j--)
		{
			if (A[j] < A[i] && lis[i] <= lis[j])
				lis[i] = lis[j] + 1;
		}
	}
	for (int i = 1; i <= n; i++)
	{
		len = max(len, lis[i]);
	}
	lcs[1][0] = lcs[0][0] = lcs[0][1] = 0;
	for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= m; j++)
		{
			if (A[i] == B[j])
				lcs[i][j] = lcs[i - 1][j - 1] + 1;
			else
				lcs[i][j] = max(lcs[i - 1][j], lcs[i][j - 1]);
		}
	}
	cout << len << " " << lcs[n][m] << endl;
	return 0;
}

C - 拿数问题 II

题意:

YJQ 上完第10周的程序设计思维与实践后,想到一个绝妙的主意,他对拿数问题做了一点小修改,使得这道题变成了 拿数问题 II。
给一个序列,里边有 n 个数,每一步能拿走一个数,比如拿第 i 个数, Ai = x,得到相应的分数 x,但拿掉这个 Ai 后,x+1 和 x-1 (如果有 Aj = x+1 或 Aj = x-1 存在) 就会变得不可拿(但是有 Aj = x 的话可以继续拿这个 x)。求最大分数。

Input
第一行包含一个整数 n (1 ≤ n ≤ 105),表示数字里的元素的个数
第二行包含n个整数a1, a2, …, an (1 ≤ ai ≤ 105)
Output
输出一个整数:n你能得到最大分值。

Input
2
1 2
Output
2
Input
3
1 2 3
Output
4
Input
9
1 2 1 3 2 2 2 2 3
Output
10

思路:

这道题可以用动态规划来解决,首先想到选择x后,x-1,x+1不能拿。这时候可以更新每一个的dp,每个dp能拿到的总分,最后找到最大的那个即可。那就需要计算出每个分数的数量。
步骤如下:计算出每个分数的数量,找到最大分数
对分数从小到大进行遍历
dp[i]=max(dp[i-1],dp[i-2]+i*(i的数量)
最后输出dp[最大分数]即可。

代码:

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int n;
long long a;
long long b[100050];
long long dp[100050];
long long mx = 0;
int main()
{
	cin >> n;
	for (int i = 1; i <= n; i++)
	{
		cin >> a;
		b[a]++;
		mx = max(mx, a);
	}
	dp[1] = b[1];
	for (long long i = 2; i <= mx; i++)
		dp[i] = max(dp[i - 1], dp[i - 2] + b[i] * i);
	cout << dp[mx] << endl;
	return 0;

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值