1. 问题描述:
给定一个整数数组 nums,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
2. 问题分析:
- 该题要求找到最大的连续子数组,并返回最大连续子数组的和。最暴力的方法就是直接进行两重循环嵌套,列出所有的子数组,找出其最大值,但此方法时间复杂度为 O(n^2),不建议采用;
- 可以尝试建立一个长度与给定数组相同的整型数组 data[nums.length],该数组的功能是 data[i] 存放以 nums[i] 结尾的子数组的和的最大值;
- 令 data[0] = nums[0],依次比较 nums[i] 与 nums[i] + data[i-1](i =1; i < nums.length; i++)。若nums[i] > (nums[i] + data[i-1]),则 data[i] = nums[i],否则 data[i] = (data[i-1] + nums[i])。
- 变量 max = nums[0],用 data[i] 与 max 进行比较,若 max < data[i],则 max = data[i],最终 max 为最大的子数组的和。
3. 代码实现:
class Solution {
public int maxSubArray(int[] nums) {
int size = nums.length;
int data[] = new int [size];
int max = data[0] = nums[0];
for(int i = 1; i < size; i++) {
if(nums[i] > (data[i-1] + nums[i])) {
data[i] = nums[i];
} else {
data[i] = data[i-1] + nums[i];
}
if(max < data[i]) {
max = data[i];
}
}
return max;
}
}