给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。
一个字符串的子序列是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。若这两个字符串没有公共子序列,则返回 0。
最长公共子序列(Longest Common Subsequence,简称LCS
)是一道非常经典的面试题目,因为它的解法是典型的二维动态规划
,大部分比较困难的字符串问题都和这个问题一个套路,比如说编辑距离
。而且,这个算法稍加改造就可以用于解决其他问题,所以说 LCS 算法是值得掌握的。
解析可以看这篇文章《经典动态规划:最长公共子序列》
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
int m = text1.length(), n = text2.length();
int[][] dp = new int[m+1][n+1];
for(int i = 1; i <= m; i++){
for(int j = 1; j <= n; j++){
if(text1.charAt(i-1) == text2.charAt(j-1)){
dp[i][j] = 1 + dp[i-1][j-1];
}else {
dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]);
}
}
}
return dp[m][n];
}
}
转化为字符数组节省时间
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
char[] t1 = text1.toCharArray();
char[] t2 = text2.toCharArray();
int m = t1.length;
int n = t2.length;
int[][] dp = new int[m+1][n+1];
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (t1[i-1] == t2[j-1]){
dp[i][j] = 1+ dp[i-1][j-1];
}else {
dp[i][j] = Math.max(dp[i-1][j],dp[i][j-1]);
}
}
}
return dp[m][n];
}
}