动态规划系列之「最长公共子序列」

1143. 最长公共子序列

给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。

一个字符串的子序列是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。

若这两个字符串没有公共子序列,则返回 0。

最长公共子序列(Longest Common Subsequence,简称LCS)是一道非常经典的面试题目,因为它的解法是典型的二维动态规划,大部分比较困难的字符串问题都和这个问题一个套路,比如说编辑距离。而且,这个算法稍加改造就可以用于解决其他问题,所以说 LCS 算法是值得掌握的。
解析可以看这篇文章《经典动态规划:最长公共子序列

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
		int m = text1.length(), n = text2.length();
      	int[][] dp = new int[m+1][n+1];
      	for(int i = 1; i <= m; i++){
          	for(int j = 1; j <= n; j++){
              	if(text1.charAt(i-1) == text2.charAt(j-1)){
                  	dp[i][j] = 1 + dp[i-1][j-1];
                }else {
                  	dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]);
                }
            }
        }
      	return dp[m][n];
    }
}

转化为字符数组节省时间

class Solution {
    public int  longestCommonSubsequence(String text1, String text2) {
        char[] t1 = text1.toCharArray();
        char[] t2 = text2.toCharArray();
        int m = t1.length;
        int n = t2.length;
        int[][] dp = new int[m+1][n+1];
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                if (t1[i-1] == t2[j-1]){
                    dp[i][j] = 1+ dp[i-1][j-1];
                }else {
                    dp[i][j] = Math.max(dp[i-1][j],dp[i][j-1]);
                }
            }
        }
        return dp[m][n];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值