给定一个字符串,返回这个字符串中有多少个回文子串。
两个相同的回文子串出现在不同的位置,认为是2个回文串。
a、aa、aaa、aba、aabaa、abcba均认为是回文子串。
示例1:
输入
"aaa"
输出
6
说明
a、a、a、aa、aa、aaa
示例2:
输入
"abcb"
输出
5
说明
a、b、c、b、bcb
函数签名:
import java.util.*;
public class Solution{
public int palindromeCount(String str){
}
}
注意题目中说的是回文子串
,而不是回文子序列
,子串是连续的,而子序列是不要求连续的。
方法一:中心拓展
计算有多少个回文子串的最朴素方法就是枚举出所有的回文子串,而枚举出所有的回文字串又有两种思路,分别是:
- 枚举出所有的子串,然后再判断这些子串是否是回文;
- 枚举每一个可能的回文中心,然后用两个指针分别向左右两边拓展,当两个指针指向的元素相同的时候就拓展,否则停止拓展。
假设字符串的长度为 n。我们可以看出前者会用 O ( n 2 ) O(n^2) O(n2) 的时间枚举出所有的子串 s [ l i ⋅ ⋅ ⋅ r i ] s[l_{i}···r_{i}] s[li⋅⋅⋅ri],然后再用 O ( r i − l i + 1 ) O(r_i - l_i + 1) O(ri−li+1) 的时间检测当前的子串是否是回文,整个算法的时间复杂度是 O ( n 3 ) O(n^3) O(n3)。而后者枚举回文中心的是 O ( n ) O(n) O(n) 的,对于每个回文中心拓展的次数也是 O ( n ) O(n) O(n) 的,所以时间复杂度是 O ( n 2 ) O(n^2) O(n2)。所以我们选择第二种方法来枚举所有的回文子串。
在实现的时候,我们需要处理一个问题,即如何有序地枚举所有可能的回文中心,我们需要考虑回文长度是奇数
和回文长度是偶数
的两种情况。如果回文长度是奇数,那么回文中心是一个字符;如果回文长度是偶数,那么中心是两个字符。当然你可以做两次循环来分别枚举奇数长度和偶数长度的回文,但是我们也可以用一个循环搞定。我们不妨写一组出来观察观察,假设 n = 4,我们可以把可能的回文中心列出来:
编号 i i i | 回文中心左起始位置 l i l_i li | 回文中心右起始位置 r i r_i ri |
---|---|---|
0 | 0 | 0 |
1 | 0 | 1 |
2 | 1 | 1 |
3 | 1 | 2 |
4 | 2 | 2 |
5 | 2 | 3 |
6 | 3 | 3 |
如下图所示:
由此我们可以看出长度为 n 的字符串会生成 2n−1 组回文中心 [ l i , r i ] [l_i, r_i] [li,ri],其中 l i = i 2 l_i = \frac{i}{2} li=2i, r i = l i + ( i % 2 ) r_i = l_i + (i \%2) ri=li+(i%2)。这样我们只要从 0 0 0 到 2 n − 1 2n−1 2n−1 遍历 i,就可以得到所有可能的回文中心,这样就把奇数长度和偶数长度两种情况统一起来了。
Java实现如下:
class Solution {
public int countSubstrings(String s) {
int res = 0;
int len = s.length();
for (int i = 0; i <= 2*len-1; i++) {
int left = i/2;
int right = i/2 + i%2;
while (left >= 0 && right < len && s.charAt(left) == s.charAt(right)) {
left--;
right++;
res++;
}
}
return res;
}
}
- 时间复杂度: O ( n 2 ) O(n^2) O(n2)
- 空间复杂度: O ( 1 ) O(1) O(1)
笔试的话还要考虑到输入输出:
完整代码如下:
import java.util.Scanner;
public class Palindrome {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
String str = input.nextLine();
int out = countSubstrings(str);
System.out.println(out);
}
public static int countSubstrings(String s) {
int res = 0;
int len = s.length();
for (int i = 0; i < 2*len; i++) {
int left = i/2;
int right = i/2 + i%2;
while (left >= 0 && right < len && s.charAt(left) == s.charAt(right)) {
left--;
right++;
res++;
}
}
return res;
}
}
方法二:Manacher 算法
Manacher算法,又叫“马拉车”算法,可以在时间复杂度为O(n)的情况下求解一个字符串的最长回文子串长度
的问题。
关于Manacher 的解法可直接看Leetcode官方题解。