34. 在排序数组中查找元素的第一个和最后一个位置
附上题目链接:https://leetcode.cn/problems/find-first-and-last-position-of-element-in-sorted-array/
题目说明时间复杂度为O(logn)并且是有序数组,最先想到的就是使用二分查找来做,那么怎么来定位数组的开始位置和结束位置呢?其实还是通过二分查找来完成。
解法一
寻找target在数组里的左右边界,有如下三种情况:
- 情况一:target 在数组范围的右边或者左边,例如数组{3, 4, 5},target为2或者数组{3, 4, 5},target为6,此时应该返回{-1, -1}
- 情况二:target 在数组范围中,且数组中不存在target,例如数组{3,6,7},target为5,此时应该返回{-1, -1}
- 情况三:target 在数组范围中,且数组中存在target,例如数组{3,6,7},target为6,此时应该返回{1, 1}
然后通过两次使用二分查找,分别定位target的最左边和最右边。
class Solution {
public int[] searchRange(int[] nums, int target) {
int leftBorder = getLeftBorder(nums,target);
int rightBorder = getRightBorder(nums,target);
//target 在数组范围的右边或者左边
if (leftBorder == -2 || rightBorder == -2){
return new int[]{-1,-1};
}
//target 在数组范围中,且数组中存在target
if (rightBorder - leftBorder > 1){
return new int[]{leftBorder + 1,rightBorder - 1};
}
//target 在数组范围中,且数组中不存在target
return new int[]{-1,-1};
}
public int getRightBorder(int[] nums, int target) {
int left = 0,right = nums.length - 1;
int rightBorder = -2;
while (left <= right){
int mid = left + (right - left) / 2;
if (nums[mid] > target){
right = mid - 1;
}else{
left = mid + 1;
rightBorder = left;
}
}
return rightBorder;
}
public int getLeftBorder(int[] nums, int target) {
int left = 0,right = nums.length - 1;
int leftBorder = -2;
while (left <= right){
int mid = left + (right - left) / 2;
if (nums[mid] < target){
left = mid + 1;
}else{
right = mid - 1;
leftBorder = right;
}
}
return leftBorder;
}
}
解法二
直接在数组中进行二分查找,如果没有找到就直接返回{-1,-1};如果查找成功,就返回当前target的下标,然后通过左右滑动指针的方式来找到符合区间。
class Solution {
public int[] searchRange(int[] nums, int target) {
int index = binarySearch(nums, target); // 二分查找
if (index == -1) { // nums 中不存在 target,直接返回 {-1, -1}
return new int[] {-1, -1}; // 匿名数组
}
// nums 中存在 targe,则左右滑动指针,来找到符合题意的区间
int left = index;
int right = index;
// 向左滑动,找左边界
while (left - 1 >= 0 && nums[left - 1] == nums[index]) { // 防止数组越界。逻辑短路,两个条件顺序不能换
left--;
}
// 向左滑动,找右边界
while (right + 1 < nums.length && nums[right + 1] == nums[index]) { // 防止数组越界。
right++;
}
return new int[] {left, right};
}
/**
* 二分查找
* @param nums
* @param target
*/
public int binarySearch(int[] nums, int target) {
int left = 0;
int right = nums.length - 1; // 不变量:左闭右闭区间
while (left <= right) { // 不变量:左闭右闭区间
int mid = left + (right - left) / 2;
if (nums[mid] == target) {
return mid;
} else if (nums[mid] < target) {
left = mid + 1;
} else {
right = mid - 1; // 不变量:左闭右闭区间
}
}
return -1; // 不存在
}
}