yarn 的调度器和调度算法

一、FIFO 调度器

在这里插入图片描述

  • FIFO 调度器,即先进先出调度器,它使用一个单队列,根据提交作业的先后顺序,先来先处理
  • 优点:简单易懂
  • 缺点:不支持多队列,生产环境很少使用

二、容量调度器

容量调度器:Capacity Scheduler,Apache Hadoop3.x 默认调度器,是 Yahoo 开发的多用户调度器

在这里插入图片描述

1. 特点

  • 多队列:每个队列可配置一定的资源量,每个队列内部默认采用 FIFO 调度策略,可设置为 DRF

    root
    |---queueA 20%
    |---queueB 50%
    |---queueC 30%
        |---userA 50%
        |---userB 50%
    
  • 容量保证:管理员可为每个队列设置资源最低保证和资源使用上限

  • 灵活性:如果一个队列中的资源有剩余,可以暂时共享给那些需要资源的队列,而一旦该队列有新的应用程序提交,则其他队列借调的资源会归还给该队列

  • 多用户:支持多用户共享集群和多应用程序同时运行。为了防止同一个用户的作业独占队列中的资源,该调度器会对同一用户提交的作业所占资源量进行限定

2. 分配算法

  • 队列资源分配:从 root 开始,使用深度优先算法,优先选择资源占用率最低的队列分配资源
  • 作业资源分配:默认按照提交作业的优先级和提交时间顺序分配资源
  • 容器资源分配:按照容器的优先级分配资源;如果优先级相同,按照数据本地性原则:
    1. 任务和数据在同一节点
    2. 任务和数据在同一机架
    3. 任务和数据不在同一节点也不在同一机架

三、公平调度器

公平调度器:Fair Scheduler,CDH 默认调度器,是 Facebook 开发的多用户调度器

在这里插入图片描述

1. 特点

  • 多队列:每个队列可配置一定的资源量,每个队列可设置的调度策略为 FIFO、FAIR、DRF
  • 容量保证:管理员可为每个队列设置资源最低保证和资源使用上限
  • 灵活性:如果一个队列中的资源有剩余,可以暂时共享给那些需要资源的队列,而一旦该队列有新的应用程序提交,则其他队列借调的资源会归还给该队列
  • 多用户:支持多用户共享集群和多应用程序同时运行。为了防止同一个用户的作业独占队列中的资源,该调度器会对同一用户提交的作业所占资源量进行限定
  • 优先选择对资源的缺额比例大的队列进行调度

2. 缺额

某一时刻一个作业应获取资源和实际获取资源的差距

3. 分配算法

3.1 FIFO 策略

根据提交作业的先后顺序,先来先服务;此时相当于容量调度器

3.2 Fair 策略

默认策略,一种基于最大最小公平算法实现的资源多路复用方式

  • 一些概念:

    • 实际最小资源份额:mindshare = Min(资源需求量,配置的最小资源)
    • 是否饥饿:isNeedy = 资源使用量 < mindshare(实际最小资源份额)
    • 资源分配比:minShareRatio = 资源使用量 / Max(mindshare, 1)
    • 资源使用权重比:useToWeightRatio = 资源使用量 / 权重
  • 队列资源分配:

    需求:集群总资源 100,有三个队列,对资源的需求分别是:
    queueA -> 20, queueB ->50, queueC -> 30
    
    第一次算:100 / 3 = 33.33
    queueA:分33.33 → 多13.33
    queueB:分33.33 → 少16.67
    queueC:分33.33 → 多3.33
    
    第二次算: (13.33 + 3.33)/ 1 = 16.66
    queueA:分20
    queueB:分33.33 + 16.66 = 50
    queueC:分30
    
  • 作业资源分配:

    • 不加权:

      需求:有一条队列总资源12个, 有4个job,对资源的需求分别是:
      job1->1, job2->2 , job3->6, job4->5
      
      第一次算: 12 / 4 = 3
      job1: 分3 --> 多2个
      job2: 分3 --> 多1个
      job3: 分3 --> 差3个
      job4: 分3 --> 差2个
      
      第二次算: 3 / 2 = 1.5
      job1: 分1
      job2: 分2
      job3: 分3 --> 差3个 --> 分1.5 --> 最终: 4.5
      job4: 分3 --> 差2个 --> 分1.5 --> 最终: 4.5
      
      第n次算: 一直算到没有空闲资源
      
    • 加权:

      需求:有一条队列总资源16,有4个job 对资源的需求分别是:
      job1->4 job2->2 job3->10 job4->4
      每个job的权重为:
      job1->5 job2->8 job3->1 job4->2
      
      第一次算: 16 / (5+8+1+2) = 1
      job1: 分5 --> 多1
      job2: 分8 --> 多6
      job3: 分1 --> 少9
      job4: 分2 --> 少2
      
      第二次算: 7 / (1+2) = 7/3
      job1: 分4
      job2: 分2
      job3: 分1 --> 分7/3(2.33) -->少6.67
      job4: 分2 --> 分14/3(4.66) -->多2.66
      
      第三次算:2.66/1=2.66
      job1: 分4
      job2: 分2
      job3: 分1 --> 分2.66/1 --> 分2.66
      job4: 分4
      
      第n次算: 一直算到没有空闲资源
      
3.3 DRF 策略

Dominant Resource Fairness

假设集群一共有100 CPU和10T 内存,而应用 A 需要(2 CPU, 300GB),应用 B 需要(6 CPU,100GB)。
则两个应用分别需要 A(2%CPU, 3%内存)和 B(6%CPU, 1%内存)的资源,这就意味着 A 是内存主导的, B 是 CPU 主导的,针对这种情况,我们可以选择 DRF 策略对不同应用进行不同资源(CPU和内存)的一个不同比例的限制
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值