一、FIFO 调度器
- FIFO 调度器,即先进先出调度器,它使用一个单队列,根据提交作业的先后顺序,先来先处理
- 优点:简单易懂
- 缺点:不支持多队列,生产环境很少使用
二、容量调度器
容量调度器:Capacity Scheduler,Apache Hadoop3.x 默认调度器,是 Yahoo 开发的多用户调度器
1. 特点
-
多队列:每个队列可配置一定的资源量,每个队列内部默认采用 FIFO 调度策略,可设置为 DRF
root |---queueA 20% |---queueB 50% |---queueC 30% |---userA 50% |---userB 50%
-
容量保证:管理员可为每个队列设置资源最低保证和资源使用上限
-
灵活性:如果一个队列中的资源有剩余,可以暂时共享给那些需要资源的队列,而一旦该队列有新的应用程序提交,则其他队列借调的资源会归还给该队列
-
多用户:支持多用户共享集群和多应用程序同时运行。为了防止同一个用户的作业独占队列中的资源,该调度器会对同一用户提交的作业所占资源量进行限定
2. 分配算法
- 队列资源分配:从 root 开始,使用深度优先算法,优先选择资源占用率最低的队列分配资源
- 作业资源分配:默认按照提交作业的优先级和提交时间顺序分配资源
- 容器资源分配:按照容器的优先级分配资源;如果优先级相同,按照数据本地性原则:
- 任务和数据在同一节点
- 任务和数据在同一机架
- 任务和数据不在同一节点也不在同一机架
三、公平调度器
公平调度器:Fair Scheduler,CDH 默认调度器,是 Facebook 开发的多用户调度器
1. 特点
- 多队列:每个队列可配置一定的资源量,每个队列可设置的调度策略为 FIFO、FAIR、DRF
- 容量保证:管理员可为每个队列设置资源最低保证和资源使用上限
- 灵活性:如果一个队列中的资源有剩余,可以暂时共享给那些需要资源的队列,而一旦该队列有新的应用程序提交,则其他队列借调的资源会归还给该队列
- 多用户:支持多用户共享集群和多应用程序同时运行。为了防止同一个用户的作业独占队列中的资源,该调度器会对同一用户提交的作业所占资源量进行限定
- 优先选择对资源的缺额比例大的队列进行调度
2. 缺额
某一时刻一个作业应获取资源和实际获取资源的差距
3. 分配算法
3.1 FIFO 策略
根据提交作业的先后顺序,先来先服务;此时相当于容量调度器
3.2 Fair 策略
默认策略,一种基于最大最小公平算法实现的资源多路复用方式
-
一些概念:
- 实际最小资源份额:mindshare = Min(资源需求量,配置的最小资源)
- 是否饥饿:isNeedy = 资源使用量 < mindshare(实际最小资源份额)
- 资源分配比:minShareRatio = 资源使用量 / Max(mindshare, 1)
- 资源使用权重比:useToWeightRatio = 资源使用量 / 权重
-
队列资源分配:
需求:集群总资源 100,有三个队列,对资源的需求分别是: queueA -> 20, queueB ->50, queueC -> 30 第一次算:100 / 3 = 33.33 queueA:分33.33 → 多13.33 queueB:分33.33 → 少16.67 queueC:分33.33 → 多3.33 第二次算: (13.33 + 3.33)/ 1 = 16.66 queueA:分20 queueB:分33.33 + 16.66 = 50 queueC:分30
-
作业资源分配:
-
不加权:
需求:有一条队列总资源12个, 有4个job,对资源的需求分别是: job1->1, job2->2 , job3->6, job4->5 第一次算: 12 / 4 = 3 job1: 分3 --> 多2个 job2: 分3 --> 多1个 job3: 分3 --> 差3个 job4: 分3 --> 差2个 第二次算: 3 / 2 = 1.5 job1: 分1 job2: 分2 job3: 分3 --> 差3个 --> 分1.5 --> 最终: 4.5 job4: 分3 --> 差2个 --> 分1.5 --> 最终: 4.5 第n次算: 一直算到没有空闲资源
-
加权:
需求:有一条队列总资源16,有4个job 对资源的需求分别是: job1->4 job2->2 job3->10 job4->4 每个job的权重为: job1->5 job2->8 job3->1 job4->2 第一次算: 16 / (5+8+1+2) = 1 job1: 分5 --> 多1 job2: 分8 --> 多6 job3: 分1 --> 少9 job4: 分2 --> 少2 第二次算: 7 / (1+2) = 7/3 job1: 分4 job2: 分2 job3: 分1 --> 分7/3(2.33) -->少6.67 job4: 分2 --> 分14/3(4.66) -->多2.66 第三次算:2.66/1=2.66 job1: 分4 job2: 分2 job3: 分1 --> 分2.66/1 --> 分2.66 job4: 分4 第n次算: 一直算到没有空闲资源
-
3.3 DRF 策略
Dominant Resource Fairness
假设集群一共有100 CPU和10T 内存,而应用 A 需要(2 CPU, 300GB),应用 B 需要(6 CPU,100GB)。
则两个应用分别需要 A(2%CPU, 3%内存)和 B(6%CPU, 1%内存)的资源,这就意味着 A 是内存主导的, B 是 CPU 主导的,针对这种情况,我们可以选择 DRF 策略对不同应用进行不同资源(CPU和内存)的一个不同比例的限制