多变量线性回归
题目:卖房子,已知一系列数据,根据房屋大小和卧室数量两个特征,预测房子价钱,数据在(ex1data2.txt),计算1650平方英尺、3个卧室的房子价钱
预备知识:
一、归一化。
特征归一化(为了使梯度下降得更方便),(x-μ)/σ, 减去平均值再除以方差。概率模型不需要归一化,因为它们不关心变量的值,而是关心变量的分布和变量之间的条件概率。像svm、线性回归之类的最优化问题就需要归一化。决策树属于前者。归一化也是提升算法应用能力的必备能力之一。
二、用正规方程(解析解)直接计算θ 。
代码
import numpy as np
import pandas as pd
path = 'E:\书籍\机器学习\机器学习题目代码及数据文件\线性回归\数据文件\ex1data2.txt'
data = pd.read_csv(path, names=['Size', 'Bedrooms', 'Price'])
# 特征归一化(为了使梯度下降得更方便),(x-μ)/σ, 减去平均值再除以方差
# 概率模型不需要归一化,因为它们不关心变量的值,而是关心变量的分布和变量之间的条件概率。
# 像svm、线性回归之类的最优化问题就需要归一化。决策树属于前者。归一化也是提升算法应用能力的必备能力之一。
mean = data.mean()
std = data.std()
data = ((data - mean) / std)
data.insert(0, 'Ones', 1)
#定义代价函数
def computeCost(x, y, theta):
inner = ((x@theta) - y)**2
return np.sum(inner) / (2 * len(x))
#定义梯度下降函数
def gradient(x, y, theta, alpha, epoch):
# m是样本的数量
m = len(y)
# 初始化一个ndarray,包含每次epoch的cost
cost = np.zeros(epoch)
for i in range(epoch):
theta = theta-(alpha/m)*((x@theta-y).T@x)
cost[i] = computeCost(x, y, theta)
return theta, cost
# alpha - 学习率,epoch - theta迭代次数,theta初始为0
alpha = 0.01
epoch = 1000
theta = np.array([0, 0, 0])
# 获取设置数据,计算最终theta值
x = data.iloc[:, :-1].values
y = data.iloc[:, -1].values
theta, cost = gradient(x, y, theta, alpha, epoch)
# size=1650 bedrooms=3 求price
price = (theta[0]+(([1650, 3] - mean[0:2]) / std[0:2])@theta[1:]) * std[2] + mean[2]
print(price)
theta = np.array([0, 0, 0])
# 正规方程
def normalEqn(x, y, theta):
theta = np.linalg.pinv(x.T@x)@x.T@y #X.T@X等价于X.T.dot(X)
return theta
theta = normalEqn(x, y, theta)
price = (theta[0]+(([1650, 3] - mean[0:2]) / std[0:2])@theta[1:]) * std[2] + mean[2]
print(price)