The Unique MST POJ - 1679最小生成树的唯一性

Given a connected undirected graph, tell if its minimum spanning tree is unique.

Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V’, E’), with the following properties:

  1. V’ = V.
  2. T is connected and acyclic.

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E’) of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E’.
Input
The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.
Output
For each input, if the MST is unique, print the total cost of it, or otherwise print the string ‘Not Unique!’.
Sample Input
2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2
Sample Output
3
Not Unique!Given a connected undirected graph, tell if its minimum spanning tree is unique.

Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V’, E’), with the following properties:

  1. V’ = V.
  2. T is connected and acyclic.

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E’) of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E’.
Input
The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.
Output
For each input, if the MST is unique, print the total cost of it, or otherwise print the string ‘Not Unique!’.
Sample Input
2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2
Sample Output
3
Not Unique!

是否存在多个最小生成树的问题,如果只有一个最小生成树,则输出权值的和,否则输出Not Unique!

思路:先建成最小生成树,然后再把最小生成树的边依次去掉,再寻找一遍是否存在最小生成树。

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std;
const int N=100000;
//vector<int> del;
int path[N];
int f[110];
int n,m;
struct Edge
{
int u,v,w;
bool operator<(const Edge &W) const{
    return w<W.w;
}
}edges[10005];

int find(int x)
{
if(f[x]==x)
return x;
else
{
    f[x]=find(f[x]);
    return f[x];
}

}
int kruskal()
{
    sort(edges,edges+m);//按权值从小到大排序
    for(int i=1;i<=n;i++)
    {
        f[i]=i;
    }
    int res=0;
    int cnt=0;
    
    //int flag=1;
    for(int i=0;i<m;i++)
    {
        int a=edges[i].u,b=edges[i].v,w=edges[i].w;//先生成最小生成树,记录
                                                     权值和所经过的路径
        a=find(a);
        b=find(b);
        if(a!=b)
        {
            res+=w;
           //cnt++;
            f[a]=b;
            path[cnt++]=i;
        }
    }
    //if(cnt==n-1)
    //flag=1;
    //if(flag)
    //{

        for(int i=0;i<cnt;i++)
        {
            int cnt1=0;
            int res1=0;
            for(int k=1;k<=n;k++)
    		{
        		f[k]=k;
    		}
            for(int j=0;j<m;j++)
            {
                if(path[i]!=j)//如果j不在之前生成树的路径上,则继续更新
                {
                	int a=edges[j].u,b=edges[j].v,w=edges[j].w;
                	a=find(a);
                	b=find(b);
                	if(a!=b)
                	{
                    		res1+=w;
                    		cnt1++;
                    		f[a]=b;
                	}
                }
            }
            if(res==res1&&cnt1==n-1)//如果权值相等且cnt1==n-1
            {
                return -1;
            }
        }
    //}
    return res;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
    scanf("%d %d",&n,&m);
    // del.clear();
    // for(int i=0;i<m;i++)
    // {
	// edges[i].u=0;
	// edges[i].v=0;
	// edges[i].w=0;
    // }
    for(int i=0;i<m;i++)
    {
        int u,v,w;
        scanf("%d %d %d",&edges[i].u,&edges[i].v,&edges[i].w);
    }
    
    int k=kruskal();
    if(k!=-1)
    printf("%d",k);
    else
    printf("Not Unique!");
    if(t)
    printf("\n");
}
return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值