1:距离排序查看提交统计提问总时间限制: 1000ms 内存限制: 65536kB描述给出三维空间中的n个点(不超过10个),求出n个点两两之间的距离,并按距离由大到小依次输出两个点的坐标及它们之间的距离。
输入输入包括两行,第一行包含一个整数n表示点的个数,第二行包含每个点的坐标(坐标都是整数)。点的坐标的范围是0到100,输入数据中不存在坐标相同的点。输出对于大小为n的输入数据,输出n*(n-1)/2行格式如下的距离信息:
(x1,y1,z1)-(x2,y2,z2)=距离
其中距离保留到数点后面2位。
(用cout输出时保留到小数点后2位的方法:cout<<fixed<<setprecision(2)<<x)样例输入4
0 0 0 1 0 0 1 1 0 1 1 1样例输出(0,0,0)-(1,1,1)=1.73
(0,0,0)-(1,1,0)=1.41
(1,0,0)-(1,1,1)=1.41
(0,0,0)-(1,0,0)=1.00
(1,0,0)-(1,1,0)=1.00
(1,1,0)-(1,1,1)=1.00提示用cout输出时保留到小数点后2位的方法:cout<<fixed<<setprecision(2)<<x
注意:
冒泡排序满足下面的性质,选择排序和快速排序(qsort或sort)需要对下面的情况进行额外处理
使用冒泡排序时要注意边界情况的处理,保证比较的两个数都在数组范围内
-
对于一行输出中的两个点(x1,y1,z1)和(x2,y2,z2),点(x1,y1,z1)在输入数据中应出现在点(x2,y2,z2)的前面。
比如输入:
2
0 0 0 1 1 1
输出是:
(0,0,0)-(1,1,1)=1.73
但是如果输入:
2
1 1 1 0 0 0
输出应该是:
(1,1,1)-(0,0,0)=1.73 -
如果有两对点p1,p2和p3,p4的距离相同,则先输出在输入数据中靠前的点对。
比如输入:
3
0 0 0 0 0 1 0 0 2
输出是:
(0,0,0)-(0,0,2)=2.00
(0,0,0)-(0,0,1)=1.00
(0,0,1)-(0,0,2)=1.00
如果输入变成:
3
0 0 2 0 0 1 0 0 0
则输出应该是:
(0,0,2)-(0,0,0)=2.00
(0,0,2)-(0,0,1)=1.00
(0,0,1)-(0,0,0)=1.00
#include <cmath>
#include <iomanip>
#include <iostream>
using namespace std;
struct dis
{
int x1, y1, z1;
int x2, y2, z2;
double v;
void init(int a, int b, int c, int d, int e, int f)
{
x1 = a;
y1 = b;
z1 = c;
x2 = d;
y2 = e;
z2 = f;
v = sqrt(1.0 * ((a-d)*(a-d)+(b-e)*(b-e)+(c-f)*(c-f)));
}
} a[105];
int x[12], y[12], z[12];
int divide(int left, int right)
{
int i = left;
int j = right;
dis k = a[i];
while (i != j)
{
while (i < j && a[j].v <= k.v)
{
j--;
}
if (j > i)
{
a[i] = a[j];
i++;
}
while (i < j && a[i].v >= k.v)
{
i++;
}
if (i < j)
{
a[j] = a[i];
j--;
}
}
a[i] = k;
return i;
}
void mysort(int left, int right)
{
if (left < right)
{
int m = divide(left, right);
mysort(left, m);
mysort(m + 1, right);
}
}
int main()
{
/* freopen("myin.txt", "r", stdin);
freopen("myout.txt", "w", stdout);*/
int n;
cin >> n;
for (int i = 0; i < n; i++)
{
cin >> x[i] >> y[i] >> z[i];
}
int t = 0;
for (int i = 0; i < n; i++)
{
for (int j = i + 1; j < n; j++)
{
a[t++].init(x[i], y[i], z[i], x[j], y[j], z[j]);
}
}
/*for (int i = 0; i < t; i++)
{
cout << '(' << a[i].x1 << ',' << a[i].y1 << ',' << a[i].z1 << ')' << '-' << '(' << a[i].x2 << ',' << a[i].y2 << ',' << a[i].z2 << ')' << '=' << fixed << setprecision(2) << a[i].v << endl;
}
cout << endl;*/
dis k;
for (int i = 0; i < t; i++)
{
bool yes = 0;
for (int j = t - 1; j > i; j--)
{
if(a[j].v >a[j - 1].v)
{
yes = 1;
k = a[j];
a[j] = a[j-1];
a[j - 1] = k;
}
}
if(!yes)
{
break;
}
}
//mysort(0, t - 1);
for (int i = 0; i < t; i++)
{
cout << '(' << a[i].x1 << ',' << a[i].y1 << ',' << a[i].z1 << ')' << '-' << '(' << a[i].x2 << ',' << a[i].y2 << ',' << a[i].z2 << ')' << '=' << fixed << setprecision(2) << a[i].v << endl;
}
return 0;
}