import tensorflow as tf #导入模块
import numpy as np
tf.Variable(3) # 数字输入
<tf.Variable ‘Variable:0’ shape=() dtype=int32, numpy=3>
tf.Variable(np.array(3.)) # 浮点数输入
<tf.Variable ‘Variable:0’ shape=() dtype=float64, numpy=3.0>
tf.Variable([1,2]) # 列表输入
<tf.Variable ‘Variable:0’ shape=(2,) dtype=int32, numpy=array([1, 2])>
tf.Variable(np.array([1,2])) # numpy数组输入
<tf.Variable ‘Variable:0’ shape=(2,) dtype=int32, numpy=array([1, 2])>
tf.Variable(tf.constant([[1, 2], [3, 4]]) # tensor输入
)
<tf.Variable ‘Variable:0’ shape=(2, 2) dtype=int32, numpy=
array([[1, 2],
[3, 4]])>
tf.Variable(
np.array([1, 2]), # numpy数组输入
dtype=tf.float64 # 指定数据类型
)
<tf.Variable ‘Variable:0’ shape=(2,) dtype=float64, numpy=array([1., 2.])>
x = tf.Variable([1, 2]) # tf.Variable复制给python变量x
x
<tf.Variable ‘Variable:0’ shape=(2,) dtype=int32, numpy=array([1, 2])>
print(x.shape, x.dtype) # 通过x来看属性
(2,) <dtype: ‘int32’>
print(x.numpy()) # 看 tf.Variable 的取值
[1 2]
x.trainable # 可被训练的属性
True
x.assign([3, 4]) # 修改 tf.Variable 的值
<tf.Variable ‘UnreadVariable’ shape=(2,) dtype=int32, numpy=array([3, 4])>
x.assign_add([1, 1]) # tf.Variable 的加法赋值
<tf.Variable ‘UnreadVariable’ shape=(2,) dtype=int32, numpy=array([4, 5])>
x.assign_sub([2, 2]) # tf.Variable 的减法赋值
<tf.Variable ‘UnreadVariable’ shape=(2,) dtype=int32, numpy=array([2, 3])>