tensorflow tf.Variable 的用法

本文介绍了在TensorFlow中如何创建和使用变量,包括不同类型的输入方式(如数字、浮点数、列表、numpy数组及Tensor)创建变量的方法,展示了变量的基本属性获取及变量值的修改操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import tensorflow as tf #导入模块
import numpy as np
tf.Variable(3) # 数字输入

<tf.Variable ‘Variable:0’ shape=() dtype=int32, numpy=3>

tf.Variable(np.array(3.)) # 浮点数输入

<tf.Variable ‘Variable:0’ shape=() dtype=float64, numpy=3.0>

tf.Variable([1,2]) # 列表输入

<tf.Variable ‘Variable:0’ shape=(2,) dtype=int32, numpy=array([1, 2])>

tf.Variable(np.array([1,2])) # numpy数组输入

<tf.Variable ‘Variable:0’ shape=(2,) dtype=int32, numpy=array([1, 2])>

tf.Variable(tf.constant([[1, 2], [3, 4]])  # tensor输入
            )

<tf.Variable ‘Variable:0’ shape=(2, 2) dtype=int32, numpy=
array([[1, 2],
[3, 4]])>

tf.Variable(
    np.array([1, 2]),  # numpy数组输入
    dtype=tf.float64  # 指定数据类型
)

<tf.Variable ‘Variable:0’ shape=(2,) dtype=float64, numpy=array([1., 2.])>

x = tf.Variable([1, 2])  # tf.Variable复制给python变量x
x

<tf.Variable ‘Variable:0’ shape=(2,) dtype=int32, numpy=array([1, 2])>

print(x.shape, x.dtype)  # 通过x来看属性

(2,) <dtype: ‘int32’>

print(x.numpy()) # 看 tf.Variable 的取值

[1 2]

x.trainable  # 可被训练的属性

True

x.assign([3, 4])  # 修改 tf.Variable 的值

<tf.Variable ‘UnreadVariable’ shape=(2,) dtype=int32, numpy=array([3, 4])>

x.assign_add([1, 1])  # tf.Variable 的加法赋值

<tf.Variable ‘UnreadVariable’ shape=(2,) dtype=int32, numpy=array([4, 5])>

x.assign_sub([2, 2])  # tf.Variable 的减法赋值

<tf.Variable ‘UnreadVariable’ shape=(2,) dtype=int32, numpy=array([2, 3])>

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏华东的博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值