python pandas DataFrame 替换 NaN 值 和 删除 NaN 所在的行。

本文介绍如何使用pandas库在Python中处理DataFrame中的NaN值,包括用特定值替换和删除包含NaN的行。通过实例演示了fillna()函数替换NaN,并展示了dropna()函数删除含有缺失值的记录。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python pandas DataFrame 替换 NaN 值 和 删除 NaN 所在的行。

import pandas as pd
import numpy as np
df1 = pd.DataFrame(
    {
        '日期': ['2021-7-2', '2021-8-2', '2021-9-2', '2021-10-2'],
        'A': [1, 2, 3, 4],
        'B': [5, np.nan, 7, 8],
        'C': [9, 10, 11, np.nan],
        'D': [13, 14, 15, 16],
        'E': ['年龄', '性别', '职业', '姓名'],
    },
    index=[0, 1, 2, 3])
print(df1)
          日期  A    B     C   D   E
0   2021-7-2  1  5.0   9.0  13  年龄
1   2021-8-2  2  NaN  10.0  14  性别
2   2021-9-2  3  7.0  11.0  15  职业
3  2021-10-2  4  8.0   NaN  16  姓名
# 替换NaN值
df2 = df1.fillna(
    '替换NaN',  # nan的替换值
    inplace=False  # 是否跟换源文件
)
print(df2)
          日期  A      B      C   D   E
0   2021-7-2  1    5.0    9.0  13  年龄
1   2021-8-2  2  替换NaN   10.0  14  性别
2   2021-9-2  3    7.0   11.0  15  职业
3  2021-10-2  4    8.0  替换NaN  16  姓名
df3 = df1.dropna(inplace=False)  # 删除NaN行
print(df3)
         日期  A    B     C   D   E
0  2021-7-2  1  5.0   9.0  13  年龄
2  2021-9-2  3  7.0  11.0  15  职业
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏华东的博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值