图与图的遍历搜索
图是一种很常见的数据结构。通过一个简单的图的入门级别的题开始学习。
题目描述:
zyc从小就比较喜欢玩一些小游戏,其中就包括画一笔画,他想请你帮他写一个程序,判断一个图是否能够用一笔画下来。
规定,所有的边都只能画一次,不能重复画。
输入描述:
第一行只有一个正整数N(N<=10)表示测试数据的组数。
每组测试数据的第一行有两个正整数P,Q(P<=1000,Q<=2000),分别表示这个画中有多少个顶点和多少条连线。(点的编号从1到P)
随后的Q行,每行有两个正整数A,B(0<A,B<P),表示编号为A和B的两点之间有连线。
输出描述:
如果存在符合条件的连线,则输出"Yes",
如果不存在符合条件的连线,输出"No"。
样例输入:
2
4 3
1 2
1 3
1 4
4 5
1 2
2 3
1 3
1 4
3 4
样例输出:
No
Yes
分析
如何储存这种数据结构。
如何判断是否可以一笔画完。
1、对于图的储存,可以使用邻接矩阵,就是一个二维数组,把两点连线不分方向的图叫做无向图,一笔画就是这样的图,用二维数组的坐标,表示两个点;
比如上图,就可以用一个2X2的数组表示(为了方便,数组直接从1开始),
表示如下:
可以看出,其关于对角线对称。
存储图时,可以记录两点之间的距离,也可以记录两点之的连线数量;
2、一笔画的判断
①图是不相连的两部分,不能一笔画成。
②每个点出去的线都是偶数 或只有两个点出去的线的数量是奇数,这样才可以完成一笔画。
3、连通图的判断
从一个点开始,可以遍历到每个点,这个图就是联通的,可以使用深度优先或广度优先
代码
搜索
void dfs(int v)//从V点开始搜索
{
book[v]=1;//标记该点
sum++;//遍历点的数目加1
if(sum==m)//如果遍历的点的和总点数相等便利结束
{
return;
}
int i,j,k;
for(i=1;i<=m;i++)//判断v能否到达i点
{
if(book[i]==0&&cc[i][v]!=0)//如果i点没有走过,且可以到达i点,再去搜索i点(递归)。
{
dfs(i);
}
}
return;
}
录入数据
scanf("%d%d",&m,&n);//m个点,n条线
int i,j,k;
for(i=1;i<=n;i++)
{
scanf("%d%d",&ch1,&ch2);
//c数组记录每个点发出几条线
c[ch1]++;
c[ch2]++;
//ch数组记录图
cc[ch1][ch2]++;
cc[ch2][ch1]++;
}
注意:由于本题有多组数据,每组录入时都要将之前的数组清空,可以使用memset()函数。
完整代码
#include<stdio.h>
#include<string.h>
int cc[1001][1001];//保存图
int book[1001],c[1001];//标记,记录每个点有几条线
int pp;
int sum;//遍历过的点的数量
int m,n;
void dfs(int v)//DFS函数
{
book[v]=1;
sum++;
if(sum==m)
{
return;
}
int i,j,k;
for(i=1;i<=m;i++)
{
if(book[i]==0&&cc[i][v]!=0)
{
dfs(i);
}
}
return;
}
int main()
{
int ch1,ch2;
int kkk;
scanf("%d",&kkk);
while(kkk--)
{
int x=0;
pp=0;
sum=0;
//清零
memset(cc,0,sizeof(cc));
memset(book,0,sizeof(book));
memset(c,0,sizeof(c));
scanf("%d%d",&m,&n);
int i,j,k;
for(i=1;i<=n;i++)
{
scanf("%d%d",&ch1,&ch2);
c[ch1]++;
c[ch2]++;
cc[ch1][ch2]++;
cc[ch2][ch1]++;
}
dfs(1);
if(sum<m)//不能全部遍历
{
printf("No\n");
continue;
}
if(sum==m)
{
for(i=1;i<=m;i++)
{
if(c[i]%2!=0)
x++;
}
if(x==0||x==2)//两个奇数点或没有
{
printf("Yes");
printf("\n");
continue;
}
else
{
printf("No");
printf("\n");
continue;
}
}
}
}
我的收获:学会了储存图这种数据结构,学会用DFS搜索。