Hadoop基本内容

本文介绍了Hadoop作为大数据处理的重要工具,详细讲解了Hadoop的高可靠性、高拓展性和高效性等优势,以及其在大数据处理中的核心组件HDFS、YARN和MapReduce的工作原理。HDFS的文件块大小、读写流程、副本节点选择策略等内容也被深入探讨,强调了NameNode和DataNode的角色。此外,还讨论了YARN作为资源协调者的角色和MapReduce的计算模型。
摘要由CSDN通过智能技术生成

大数据特点

1.Volume(大量)
2.Velocity(高速)
3.Variety(多样)
4.Value(低价值密度)

Hadoop概述

1.Hadoop优势

(1)高可靠性:Hadoop底层维护多个数据副本,所以即使Hadoop某个计算元素或存储出现故障,也不会导致数据丢失。
(2)高拓展性:在集群间分配任务数据,可方便的扩展数以千计的节点。
(3)高效性:在MapReduce的思想下,Hadoop是并行工作的,以加快任务处理速度。
(4)高容错性:能够自动将失败的任务重新分配。

2.Hadoop优缺点

优点

(1)高容错性
数据自动保存多个副本。它通过增加副本的形式,提高容错性。某一个副本丢失以后,它可以自动恢复。
(2)适合处理大数据
数据规模:能够处理数据规模达到GB、TB、甚至PB级别的数据;
文件规模:能够处理百万规模以上的文件数量,数量相当之大。
(3)可构建在廉价机器上,通过多副本机制,提高可靠性。

缺点

(1)不适合低延时数据访问,比如毫秒级的存储数据,是做不到的。
(2)无法高效的对大量小文件进行存储。
存储大量小文件的话,它会占用NameNode大量的内存来存储文件目录和块信息。这样是不可取的,因为NameNode的内存总是有限的;
小文件存储的寻址时间会超过读取时间,它违反了HDFS的设计目标。
(3)不支持并发写入、文件随机修改。
一个文件只能有一个写,不允许多个线程同时写;
仅支持数据append(追加),不支持文件的随机修改。

3.Hadoop组成

Hadoop1.x组成:HDFS(数据存储)、Common(辅助工

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值