ForkJoin使用,模拟数据库查询操作List

本文介绍了如何使用ForkJoin框架进行数据库查询操作的优化。通过将大任务分解为子任务,利用工作窃取算法提高并行计算效率,实现对大量数据的快速查询和整合。示例包括1~100相加、批量消息发送和模拟报表信息查询返回List的操作。在实际应用中需要注意线程安全问题,如使用HashMap的克隆避免数据混乱。
摘要由CSDN通过智能技术生成

ForkJoin使用,模拟数据库查询操作

手上的工作需要实现从数据库中查询大量的数据,然后将数据整合进行分页,于是了解使用ForkJoin框架,将数据库按条件分页建立索引,以分页为每次查询最大限度来进行查询,最后将查询结果整合,实现对数据查询速度的优化。

ForkJoin框架

从JDK1.7开始,Java提供Fork/Join框架用于并行执行任务,它的思想就是讲一个大任务分割成若干小任务,最终汇总每个小任务的结果得到这个大任务的结果。

这种思想和MapReduce很像(input --> split --> map --> reduce --> output)

主要有两步:
第一、任务切分;
第二、结果合并
它的模型大致是这样的:线程池中的每个线程都有自己的工作队列(PS:这一点和ThreadPoolExecutor不同,ThreadPoolExecutor是所有线程公用一个工作队列,所有线程都从这个工作队列中取任务),当自己队列中的任务都完成以后,会从其它线程的工作队列中偷一个任务执行,这样可以充分利用资源。

工作窃取(work-stealing)算法是指某个线程从其他队列里窃取任务来执行。工作窃取的运行流程图如下:
工作窃取
假如我们需要做一个比较大的任务,我们可以把这个任务分割为若干互不依赖的子任务,为了减少线程间的竞争,于是把这些子任务分别放到不同的队列里,并为每个队列创建一个单独的线程来执行队列里的任务,线程和队列一一对应,比如A线程负责处理A队列里的任务。但是有的线程会先把自己队列里的任务干完,而其他线程对应的队列里还有任务等待处理。干完活的线程与其等着,不如去帮其他线程干活,于是它就去其他线程的队列里窃取一个任务来执行。而在这时它们会访问同一个队列,所以为了减少窃取任务线程和被窃取任务线程之间的竞争,通常会使用双端队列,被窃取任务线程永远从双端队列的头部拿任务执行,而窃取任务的线程永远从双端队列的尾部拿任务执行。

工作窃取算法的优点是充分利用线程进行并行计算,并减少了线程间的竞争,其缺点是在某些情况下还是存在竞争,比如双端队列里只有一个任务时。并且消耗了更多的系统资源,比如创建多个线程和多个双端队列。

API介绍:

ForkJoinPool与其它的ExecutorService区别主要在于它使用“工作窃取”:线程池中的所有线程都企图找到并执行提交给线程池的任务。当大量的任务产生子任务的时候,或者同时当有许多小任务被提交到线程池中的时候,这种处理是非常高效的。特别的,当在构造方法中设置asyncMode为true的时候这种处理更加高效。

ForkJoinTask代表运行在ForkJoinPool中的任务。

ForkJoinTask中的主要方法:
fork() 在当前线程运行的线程池中安排一个异步执行。简单的理解就是再创建一个子任务。
join() 当任务完成的时候返回计算结果。
invoke() 开始执行任务,如果必要,等待计算完成。

子类:
RecursiveAction 一个递归无结果的ForkJoinTask(没有返回值)
RecursiveTask 一个递归有结果的ForkJoinTask(有返回值)

ForkJoinWorkerThread代表ForkJoinPool线程池中的一个执行任务的线程。

类结构图:

在这里插入图片描述

使用ForkJoin处理过程

在这里插入图片描述

代码示例

1.实现1~100相加
package forkJoin;

import java.util.concurrent.*;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.stream.IntStream;

/**
 * @Author yangwen-bo
 * @Date 2020/6/8.
 * @Version 1.0
 *
 * 初步简单使用forkjoin
 * 使用forkjoin实现1~100求和
 */
public class ForkJoinDemo {
   

    /**
     * ForkJoinPool是最外层运行任务的“池子”
     *
     * ForkJoinPool由ForkJoinTask数组和ForkJoinWorkerThread数组组成,
     * ForkJoinTask数组负责存放程序提交给ForkJoinPool的任务,
     * 而ForkJoinWorkerThread数组负责执行这些任务
     *
     * ForkJoinTask就是ForkJoinPool里面的每一个任务。
     * 他主要有两个子类:
     * RecursiveAction(一个递归无结果的ForkJoinTask(没有返回值))
     * 和RecursiveTask(一个递归有结果的ForkJoinTask(有返回值))。
     * 然后通过fork()方法去分配任务执行任务,通过join()方法汇总任务结果
     *
     * ForkJoinTask在执行的时候可能会抛出异常,在主线程中是无法直接获取的,
     * 但是可以通过ForkJoinTask提供的isCompletedAbnormally()方法来检查任务是否已经抛出异常或已经被取消了
     *
     */

    /**
     * RecursiveAction是没有返回值的 compute处理后没有返回值
     * ForkJoinPool submit之后没有返回值,
     * 可以通过forkJoinPool.awaitQuiescence( 100, TimeUnit.MILLISECONDS )阻塞当前线程直到 ForkJoinPool 中所有的任务都执行结束
     *
     *
     */

    // RecursiveTask一个递归有结果的ForkJoinTask(有返回值)
    private static class MyRecursiveTask extends RecursiveTask<Integer>{
   
        //规定的任务拆分最小值
        private final int THRESHOLD = 10;

        private final int start;
        private final int end;
        public MyRecursiveTask(int start, int end) {
   
            this.start = start;
            this.end = end;
        }

        @Override
        protected Integer compute() {
   
            //使用二分法细分任务,如果任务小的不能再细分,则直接计算
            if (end-start<=THRESHOLD){
   
                // 任务已不能拆分,直接计算
                // 这里是求给定两个数之间的数求和,rangeClosed包含结束节点
                return IntStream.rangeClosed( start,end )
Fork/Join框架在Java中主要用于并行执行任务,而不是直接用于查询数据库。然而,你可以使用Fork/Join框架来并行执行多个数据库查询任务,并将它们的结果汇总起来。下面是一个示例代码,展示了如何使用Fork/Join框架并行查询数据库: ```java import java.util.ArrayList; import java.util.List; import java.util.concurrent.ForkJoinPool; import java.util.concurrent.RecursiveTask; public class DatabaseQueryTask extends RecursiveTask<List<String>> { private List<String> databases; public DatabaseQueryTask(List<String> databases) { this.databases = databases; } @Override protected List<String> compute() { if (databases.size() <= 1) { // 如果只有一个数据库,直接查询并返回结果 return queryDatabase(databases.get(0)); } else { // 将任务切分成更小的子任务 int mid = databases.size() / 2; DatabaseQueryTask leftTask = new DatabaseQueryTask(databases.subList(0, mid)); DatabaseQueryTask rightTask = new DatabaseQueryTask(databases.subList(mid, databases.size())); // 并行执行子任务 leftTask.fork(); rightTask.fork(); // 合并子任务的结果 List<String> leftResult = leftTask.join(); List<String> rightResult = rightTask.join(); leftResult.addAll(rightResult); return leftResult; } } private List<String> queryDatabase(String database) { // 执行数据库查询操作,并返回结果 // 这里只是一个示例,你需要根据具体的数据库类型和查询语句来实现查询操作 List<String> result = new ArrayList<>(); // 执行数据库查询操作... return result; } public static void main(String[] args) { List<String> databases = new ArrayList<>(); databases.add("database1"); databases.add("database2"); databases.add("database3"); ForkJoinPool forkJoinPool = new ForkJoinPool(); DatabaseQueryTask task = new DatabaseQueryTask(databases); List<String> result = forkJoinPool.invoke(task); // 处理查询结果 for (String data : result) { System.out.println(data); } } } ``` 在上面的示例中,我们创建了一个`DatabaseQueryTask`类,继承自`RecursiveTask`,并重写了`compute()`方法来执行数据库查询任务。如果数据库数量大于1,我们将任务切分成更小的子任务,并使用`fork()`方法并行执行子任务。最后,我们使用`join()`方法合并子任务的结果,并返回最终的查询结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值