目录
一、引入并查集
○ 解决连接问题(网络中节点的连接问题)(两个社交网络中的人能不能根据好友互相认识)。
○ 数学中的集合类的实现。
○ 并查集的高效是因为只回答了连接问题,没有回答路径问题。
1、连接问题与路径问题:
连接问题要比路径问题回答的问题少,所以更高效。路径问题还是得看图论。
算法的实现:如果额外的回答了别的问题,那么可能存在更加高效的算法,只回答了需要的问题。
2、接口
并查集需要支持的接口:一组数据需要支持://优化到最后,其时间复杂度近乎是O(1);
Union(p,q)
find (p )
isconnected(p,q)
二、基础并查集
1、 Quickfind模式:
用ID 数组来表示两个节点的连接性。
Find 、isconnected只需要O(1) ;Union需要O(n),需要优化。
○ 初始化的时候,自己和自己是连通的。
○ 并的时候,需要O(n)让两个相连的连在一起。
○ 查的时候,只需要查ID数组中数一样,就是连接的。
1.1、实现
// Union-Find
class UnionFind {
private:
int *id; // 我们的第一版Union-Find本质就是一个数组
int count; // 数据个数
public:
// 构造函数
UnionFind(int n) {
count = n;
id = new int[n];
// 初始化, 每一个id[i]指向自己, 没有合并的元素
for (int i = 0; i < n; i++)
id[i] = i;
}
// 析构函数
~UnionFind() {
delete[] id;
}
// 查找过程, 查找元素p所对应的集合编号
int find(int p) {
assert(p >= 0 && p < count);
return id[p];
}
// 查看元素p和元素q是否所属一个集合
// O(1)复杂度
bool isConnected(int p, int q) {
return find(p) == find(q);
}
// 合并元素p和元素q所属的集合
// O(n) 复杂度
void unionElements(int p, int q) {
int pID = find(p);
int qID = find(q);
if (pID == qID)
return;
// 合并过程需要遍历一遍所有元素, 将两个元素的所属集合编号合并
for (int i = 0; i < count; i++)
if (id[i] == pID)
id[i] = qID;
}
};
2、Quickunion模式:
每个元素有一个指向父亲节点的指针。可以用数组来表示,数组中存的是指向父节点的指针。
○ 初始化的时候,指针指向自己,表示为自己为自己的根。
○ 并的时候,只需要让其根连到另一个的根上。
○ 查的时候,只需要查两个节点在不在一个根上。
2.1、实现
class UnionFind{
private:
// 我们的第二版Union-Find, 使用一个数组构建一棵指向父节点的树
// parent[i]表示第i个元素所指向的父节点
int* parent;
int count; // 数据个数
public:
// 构造函数
UnionFind(int count){
parent = new int[count];
this->count = count;
// 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
for( int i = 0 ; i < count ; i ++ )
parent[i] = i;
}
// 析构函数
~UnionFind(){
delete[] parent;
}
// 查找过程, 查找元素p所对应的集合编号
// O(h)复杂度, h为树的高度
int find(int p){
assert( p >= 0 && p < count );
// 不断去查询自己的父亲节点, 直到到达根节点
// 根节点的特点: parent[p] == p
while( p != parent[p] )
p = parent[p];
return p;
}
// 查看元素p和元素q是否所属一个集合
// O(h)复杂度, h为树的高度
bool isConnected( int p , int q ){
return find(p) == find(q);
}
// 合并元素p和元素q所属的集合
// O(h)复杂度, h为树的高度
void unionElements(int p, int q){
int pRoot = find(p);
int qRoot = find(q);
if( pRoot == qRoot )
return;
parent[pRoot] = qRoot;
}
};
3、Quickunion模式优化:
以下优化都是为了降低树高,使得降低操作时间复杂度。
3.1、 Quickunion优化size:
加一个size数组,表示当前根节点所在树的节点个数。
union 的时候让小size的并到大size的根中。降低树的高度。这样已经比上面两种快了一个数量级了。
union 的时候更新 size。
优化size实现
class UnionFind{
private:
int* parent; // parent[i]表示第i个元素所指向的父节点
int* sz; // sz[i]表示以i为根的集合中元素个数
int count; // 数据个数
public:
// 构造函数
UnionFind(int count){
parent = new int[count];
sz = new int[count];
this->count = count;
for( int i = 0 ; i < count ; i ++ ){
parent[i] = i;
sz[i] = 1;
}
}
// 析构函数
~UnionFind(){
delete[] parent;
delete[] sz;
}
// 查找过程, 查找元素p所对应的集合编号
// O(h)复杂度, h为树的高度
int find(int p){
assert( p >= 0 && p < count );
// 不断去查询自己的父亲节点, 直到到达根节点
// 根节点的特点: parent[p] == p
while( p != parent[p] )
p = parent[p];
return p;
}
// 查看元素p和元素q是否所属一个集合
// O(h)复杂度, h为树的高度
bool isConnected( int p , int q ){
return find(p) == find(q);
}
// 合并元素p和元素q所属的集合
// O(h)复杂度, h为树的高度
void unionElements(int p, int q){
int pRoot = find(p);
int qRoot = find(q);
if( pRoot == qRoot )
return;
// 根据两个元素所在树的元素个数不同判断合并方向
// 将元素个数少的集合合并到元素个数多的集合上
if( sz[pRoot] < sz[qRoot] ){
parent[pRoot] = qRoot;
sz[qRoot] += sz[pRoot];
}
else{
parent[qRoot] = pRoot;
sz[pRoot] += sz[qRoot];
}
}
};
3.2、 Quickunion优化rank:
size 优化存在的问题:因为size记录的不是树高,会造成矮胖树并到高瘦树中,造成树依然很高。
将size数组优化为rank数组,表示当前根节点的数高。
○ 并的时候,让矮的树并到高的树中;如果两个树一样高,将一个并到另一个,作为根的高度++;
○ 同样为了降低树的高度。但是对于size优化,效果不明显,因为极端的情况很少,反而因为判断增加,造成运算消耗。但是总体还是比size理想。
优化rank实现
class UnionFind{
private:
int* rank; // rank[i]表示以i为根的集合所表示的树的层数
int* parent; // parent[i]表示第i个元素所指向的父节点
int count; // 数据个数
public:
// 构造函数
UnionFind(int count){
parent = new int[count];
rank = new int[count];
this->count = count;
for( int i = 0 ; i < count ; i ++ ){
parent[i] = i;
rank[i] = 1;
}
}
// 析构函数
~UnionFind(){
delete[] parent;
delete[] rank;
}
// 查找过程, 查找元素p所对应的集合编号
// O(h)复杂度, h为树的高度
int find(int p){
assert( p >= 0 && p < count );
// 不断去查询自己的父亲节点, 直到到达根节点
// 根节点的特点: parent[p] == p
while( p != parent[p] )
p = parent[p];
return p;
}
// 查看元素p和元素q是否所属一个集合
// O(h)复杂度, h为树的高度
bool isConnected( int p , int q ){
return find(p) == find(q);
}
// 合并元素p和元素q所属的集合
// O(h)复杂度, h为树的高度
void unionElements(int p, int q){
int pRoot = find(p);
int qRoot = find(q);
if( pRoot == qRoot )
return;
// 根据两个元素所在树的元素个数不同判断合并方向
// 将元素个数少的集合合并到元素个数多的集合上
if( rank[pRoot] < rank[qRoot] ){
parent[pRoot] = qRoot;
}
else if( rank[qRoot] < rank[pRoot]){
parent[qRoot] = pRoot;
}
else{ // rank[pRoot] == rank[qRoot]
parent[pRoot] = qRoot;
rank[qRoot] += 1; // 此时, 我维护rank的值
}
}
};
3.3、路径压缩1 优化find
○ 优化find:让其向上找根的时候,如果父节点不是根,就让父节点指向父节点的父节点。
路径压缩1 实现
class UnionFind{
private:
// rank[i]表示以i为根的集合所表示的树的层数
// 在后续的代码中, 我们并不会维护rank的语意, 也就是rank的值在路径压缩的过程中, 有可能不在是树的层数值
// 这也是我们的rank不叫height或者depth的原因, 他只是作为比较的一个标准
// 关于这个问题,可以参考问答区:http://coding.imooc.com/learn/questiondetail/7287.html
int* rank;
int* parent; // parent[i]表示第i个元素所指向的父节点
int count; // 数据个数
public:
// 构造函数
UnionFind(int count){
parent = new int[count];
rank = new int[count];
this->count = count;
for( int i = 0 ; i < count ; i ++ ){
parent[i] = i;
rank[i] = 1;
}
}
// 析构函数
~UnionFind(){
delete[] parent;
delete[] rank;
}
// 查找过程, 查找元素p所对应的集合编号
// O(h)复杂度, h为树的高度
int find(int p){
assert( p >= 0 && p < count );
// path compression 1
while( p != parent[p] ){
parent[p] = parent[parent[p]];
p = parent[p];
}
return p;
// path compression 2, 递归算法
// if( p != parent[p] )
// parent[p] = find( parent[p] );
// return parent[p];
}
// 查看元素p和元素q是否所属一个集合
// O(h)复杂度, h为树的高度
bool isConnected( int p , int q ){
return find(p) == find(q);
}
// 合并元素p和元素q所属的集合
// O(h)复杂度, h为树的高度
void unionElements(int p, int q){
int pRoot = find(p);
int qRoot = find(q);
if( pRoot == qRoot )
return;
// 根据两个元素所在树的元素个数不同判断合并方向
// 将元素个数少的集合合并到元素个数多的集合上
if( rank[pRoot] < rank[qRoot] ){
parent[pRoot] = qRoot;
}
else if( rank[qRoot] < rank[pRoot]){
parent[qRoot] = pRoot;
}
else{ // rank[pRoot] == rank[qRoot]
parent[pRoot] = qRoot;
rank[qRoot] += 1; // 此时, 我维护rank的值
}
}
};
3.4、路径压缩2 优化find
理论上最优,但是因为递归的消耗,使得效果可能没有上面的优化好。
优化find:让其向上找根的时候,递归的将其父节点返回,赋值给当前节点。使树的高度为2.
结束条件为,当前节点的父节点是自己,因为根是指向自己的。
路径压缩2 实现
class UnionFind{
public: // 后续, 我们要在外部操控并查集的数据, 在这里使用public
int* parent; // parent[i]表示第i个元素所指向的父节点
private:
// rank[i]表示以i为根的集合所表示的树的层数
// 在后续的代码中, 我们并不会维护rank的语意, 也就是rank的值在路径压缩的过程中, 有可能不在是树的层数值
// 这也是我们的rank不叫height或者depth的原因, 他只是作为比较的一个标准
// 关于这个问题,可以参考问答区:http://coding.imooc.com/learn/questiondetail/7287.html
int* rank;
int count; // 数据个数
public:
// 构造函数
UnionFind(int count){
parent = new int[count];
rank = new int[count];
this->count = count;
for( int i = 0 ; i < count ; i ++ ){
parent[i] = i;
rank[i] = 1;
}
}
// 析构函数
~UnionFind(){
delete[] parent;
delete[] rank;
}
// 查找过程, 查找元素p所对应的集合编号
// O(h)复杂度, h为树的高度
int find(int p){
assert( p >= 0 && p < count );
// path compression 2, 递归算法
if( p != parent[p] )
parent[p] = find( parent[p] );
return parent[p];
}
// 查看元素p和元素q是否所属一个集合
// O(h)复杂度, h为树的高度
bool isConnected( int p , int q ){
return find(p) == find(q);
}
// 合并元素p和元素q所属的集合
// O(h)复杂度, h为树的高度
void unionElements(int p, int q){
int pRoot = find(p);
int qRoot = find(q);
if( pRoot == qRoot )
return;
// 根据两个元素所在树的元素个数不同判断合并方向
// 将元素个数少的集合合并到元素个数多的集合上
if( rank[pRoot] < rank[qRoot] ){
parent[pRoot] = qRoot;
}
else if( rank[qRoot] < rank[pRoot]){
parent[qRoot] = pRoot;
}
else{ // rank[pRoot] == rank[qRoot]
parent[pRoot] = qRoot;
rank[qRoot] += 1; // 此时, 我维护rank的值
}
}
// 打印输出并查集中的parent数据
void show(){
for( int i = 0 ; i < count ; i ++ )
cout << parent[i] << " ";
cout <<endl;
}
};