源码简介-pytorch
文章平均质量分 77
两只蜡笔的小新
这个作者很懒,什么都没留下…
展开
-
pytorch中tensor的复制,tensor.repeat()与tensor.tile()与tensor.repeat_interleave()
博主最近在复现GAMSNet的时候,用到将张量B*1*H*W转化为B*C*H*W的操作,pytorch提供三个张量复制的函数tensor.repeat()与tensor.tile()与tensor.repeat_interleave()。tensor.repeat() 与 tensor.tile() tensor.repeat_interleave() 的源码,pycharm鼠标点进去可以看到。当三者传入的参数完全一致的时候,这三个函数的功能是一模一样的。沿着指定的维度复制指定次数,原创 2023-03-12 09:58:35 · 3025 阅读 · 0 评论 -
pytorch从零实现resnet50
之前博主写过一个ResNet34, ResNet18的实现方法,对于ResNet50的实现方法有点不太一样,之前的实现方法参考上面的链接。下面介绍ResNet50的实现方法。基本结构示意图发现ResNet50,其基本模块是三个,1*1 3*3 1*1 的卷积层,在向前推进的时候,需要特征图的通道数降维,原创 2023-03-10 10:34:49 · 1324 阅读 · 0 评论 -
UserWarning:Implicit dimension choice for softmax has been deprecated.原理及解决
如果用于图像处理,tensor shape为:B×C×H×W,则可以直接设置dim = 1。UserWarning:Implicit dimension choice for softmax has been deprecated. 消除警告的办法_York1996的博客-CSDN博客_userwarning: implicit dimension choice for softmaxtorch.nn.Softmax()用法_Lins H的博客-CSDN博客。原创 2023-02-28 09:49:37 · 1441 阅读 · 0 评论 -
nn.Dropout随机丢神经元的用法
pytorch与tensorflow中均有nn.dropout,两者之间的使用方法,下面将介绍。原创 2023-02-22 18:57:32 · 2840 阅读 · 0 评论 -
Pytorch模型的保存、加载以及转torchScrip
前言:pytorch在训练的时候不定时的保存模型,防止因为异常中断而造成前功尽弃。但是pytorch中保存模型的情况有很多种,导致加载保存后的模型会出现geg原创 2021-06-02 21:55:23 · 854 阅读 · 0 评论 -
pytorch模型训练的时候 GPU 使用率不高
前言:博主使用的显卡配置为:2*RTX 2080Ti,最近在训练的时候,监控显卡的资源使用情况发现,虽然同是使用了两张显卡,但是每张显卡的使用率很不稳定,貌似是交替使用,这种情况下训练的速度是很慢的,为了解决下面是解决这个问题的一些过程。1. CPU和内存的使用情况2. 用linux命令查看显卡资源的使用情况watch -n 1 nvidia-smi模型执行预测阶段 使用显卡0,但是也只有51%的使用率。模型在训练阶段,同时使用两张显卡,发现里利用率也不高,我截取的最原创 2021-05-27 10:49:25 · 11073 阅读 · 0 评论 -
pytorch中卷积操作的初始化方法(kaiming_uniform_详解)
摘要:最近写了一篇文章,reviewers给了几个意见,其中之一就是:不同配置下的网络初始化条件是否相同,是怎样初始化的?之前竟然没有关注过这个问题,应该是torch默认情况下会初始化卷积核参数,这里详细讲解一下torch卷积操作的初始化过程。1. pytorch中的卷积运算分类在pycharm的IDE中,按住ctrl+鼠标点击torch.nn.Conv2d可以进入torch的内部卷积运算的源码(conv.py)搭建网络经常使用到的模块如下图所示:class _ConvNd(.原创 2021-05-26 14:02:40 · 12628 阅读 · 6 评论