【头歌答案】机器学习--- 决策树

决策树是一种基于机器学习算法,它通过构建一棵树状结构来进行分类或回归任务。ID3(Iterative Dichotomiser 3)算法是最早的决策树生成算法之一,由R.A. Quinlan在1986年提出。下面是ID3算法构建决策树的主要步骤: 1. **目标定义**:ID3算法的目标是选择一个最优的属性(特征),该属性能够最大化数据集的纯度划分。 2. **熵或信息增益计算**:ID3使用信息熵来度量数据集的不确定性,以及每个属性对减少这个不确定性的贡献。对于分类问题,通常使用信息增益(Entropy Gain);对于连续值,可以用基尼不纯度(Gini Impurity)代替。 3. **选择最佳属性**:选择信息增益或基尼不纯度最大的属性作为当前节点的分裂属性。 4. **递归分割**:根据选定的属性,将数据集分割成子集,然后对每个子集递归地应用ID3算法,直到所有数据属于同一类别或者满足停止条件。 5. **停止条件**:常见的停止条件包括达到最大深度、子集太小(如样本数小于某个阈值)或者没有可用的属性可以选择。 6. **创建决策节点**:当数据纯度达到一定程度或达到最大深度时,创建一个决策节点,其结果是根据选择的属性和子集的类别。 7. **输出决策树**:最终形成一个从根到叶的决策树模型,其中内部节点表示特征测试,分支表示可能的结果,叶子节点代表类别预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值