目录
问题背景
思考这么一个问题背景,假设有15辆车,每辆车最多承载8个人,总共有100个人。现在为了生成机器学习数据集,你必须随机把乘客塞进车里面,同时不超出capacity,并且结果以(15*100)的binary矩阵返回。
在python中,for循环的效率是相当低的,那没有没有办法利用numpy在批量计算时的性能呢?
不管他,先import再说
import numpy as np
num_cars = 15 # 车的数量
cap = 8 # 车的容量
num_psgr = 100 # 乘客的数量
# 保证 num_cars*cap >= num_psgr
我们先把问题分成两部分,首先是随机分配,然后是一个类似于one-hot coding的程序,这里我姑且叫他multi-hot coding。