打家劫舍问题总结

这篇博客总结了打家劫舍问题的动态规划解决方案,包括三个不同版本的问题:打家劫舍Ⅰ、Ⅱ和Ⅲ。博主详细分析了动态规划的步骤,阐述了如何确定状态、转移方程,并提供了C++实现。在打家劫舍Ⅰ中,目标是计算不触动警报的情况下一夜能偷窃的最高金额;打家劫舍Ⅱ中,问题复杂度在于房屋围成一圈;打家劫舍Ⅲ涉及到了二叉树结构。
摘要由CSDN通过智能技术生成

1. 打家劫舍Ⅰ

1.1 题目描述

        你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两件相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
        给定一个代表房屋存放金额的非负整数数组,计算你不触动警报装置的情况下,一夜之内能够偷窃到的最高金额。

【示例1】

输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4 

【示例2】

输入:[2,7,9,3,1]
输出:12
解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
     偷窃到的最高金额 = 2 + 9 + 1 = 12

来源:力扣(LeetCode)

【提示】

1 <= nums.length <= 100
0 <= nums[i] <= 400

1.2 动态规划步骤分析

  • (1)确定状态
    • f[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为f[i]
  • (2)转移方程
    • 决定f[i]的因素就是第i间房屋偷不偷。
      • 若偷:则f[i] = f[i-2] + nums[i];i-1间房屋肯定是不考虑的,找出 下标i-2(包括i-2)以内的房屋,最多可以偷窃的金额为f[i-2]加上第i`房间偷到的钱
      • 若不偷,则f[i] = f[i-1],即考虑i-1房,并不是一定要偷
    • 取两者的最大值即为转移方程:f[i] = max(f[i-1],f[i-2]+nums[i])
  • (3)初始化
    • 由递推公式f[i] = max(f[i-1],f[i-2]+nums[i])知,递推公式的基础是f[0]和f[1]。
从定义上来说
vector<int> f(nums.size());
f[0] = nums[0];
f[1] = max(nums[0],nums[1]);
  • (4)计算顺序
    • 从前到后

1.3 C++实现

int rob(vector<int>& nums){
   
    if(nums.size() == 0) return 0;
    if(nums.size() == 1
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值