动归

Dynamic Programming

DP定义:动态规划是分治的延伸,大事化小,小事化了。

三个特点:把原来的问题分成几个相似的问题;所有问题只要一次就可以解决存储子问题的解

**四要素:**状态定义 状态间的转移方程 状态的初始化 返回的结果

使用的场景: 最值,可不可行 是不是 方案的个数

第一题 Fibonacci

斐波那契数
斐波那契数

public class Solution {
    public int Fibonacci(int n) {
        if(n==0){
            return 0;
        }
        if(n==1||n==2){
            return 1;
        }
        return Fibonacci(n-1)+Fibonacci(n-2);
    }
}    //递归的方式

数列状态 :数列的第i项的值

转移方程 : F(i):F(i-1)+F(i-2)

初始状态:需要前两个的值 F(0)=0 F(1)=1

返回F(n)

        int fn2=0;
        int fn1=1;
        int fn=0;
        if(n<=1){
            return n;
        }
        for(int i=2;i<=n;++i){
            fn=fn1+fn2;
            fn2=fn1;
            fn1=fn;
        }
        return fn;

第二题 变态青蛙跳台阶

变态青蛙跳台阶
一只青蛙可以跳两级台阶,也可以跳一阶台阶,…也可以一次跳上n级台阶 问跳 上n级台阶有多少种跳法

状态F(i):跳上i级台阶的方法个数

转移方程:F(i) :F(i-1)+F(i-2)+F(i-3)…+F(0)

​ F(i-1): F(i-2)+F(i-3)+…+F(0)

​ F(i): F(i-1)+ F(i-1)==2 F(i-1)

初始状态:F(1)

返回 F(n) =2F(1)

public int jumpFloorII(int target) {
        if(target==0){
            return 0;
        }
        int ret=1;
        for(int i=2;i<=target;++i){
            ret *=2;  //此处也可以使用移位操作
        }
        return ret;
    }

第三题 青蛙跳台阶(如同斐波那契数)

青蛙跳台阶

青蛙只能跳一级台阶或两级台阶问跳上第n级台阶跳法

状态F(i):跳上i级台阶的方法个数

转移方程:F(i) :F(i-1)+F(i-2)

初始状态:F(1)=1; F(2)=2;

返回 F(n)

public int jumpFloor(int target) {
         int fn2=1;
        int fn1=2;
        int fn=0;
        if(target<=2){
            return target;
        }
        for(int i=3;i<=target;++i){
            fn=fn1+fn2;
            fn2=fn1;
            fn1=fn;
        }
        return fn;
    }

第四题 矩形覆盖 ( 如同斐波那契数)

矩形覆盖

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

状态F(i):2*n大矩形被覆盖的方法个数

转移方程:F(i) :F(i-1)+F(i-2)

初始状态:F(1)=1; F(2)=2;

返回 F(n)
在这里插入图片描述

public int rectCover(int target) {
         int fn2=1;
        int fn1=2;
        int fn=0;
        if(target<=2){
            return target;
        }
        for(int i=3;i<=target;++i){
            fn=fn1+fn2;
            fn2=fn1;
            fn1=fn;
        }
        return fn;
    }

第五题 最大连续子数组和

最大连续子数组和

例如{6,-3,-2,7,-15,1,2,2} 连续子向量和最大为8(数组从0到3下标)

问题; 数组最大连续和

子问题: 局部元素构成数组,最大连续和

状态F(i):前i个元素组成数组,最大连续和

转移方程: F(i):   F(i-1)
此时  无法体现前i个元素中 子序列是连续的   所以无效

状态:以第i个元素结尾最大连续子序列和

转移方程: F(i)=max(F(i-1)+a[i],a[i])

初始状态:F(0)=a[0];

返回值: max(F(i))

public int FindGreatestSumOfSubArray(int[] array) {
        int ret=array[0];
        for(int i =1;i<array.length;i++){
           array[i]=Math.max(array[i-1]+array[i],array[i]);
           ret=Math.max(ret,array[i]);
        }
        return ret;
    }

第六题 字符串分割

字符串分割

给定s=“nowcode”;
dict=[“now”, “code”].
返回true,因为"nowcode"可以被分割成"now code".

问题:单词能否成功分割

子问题:单词的部分字母能否可以成功分割

状态:单词前i个字符能否成功分割

转移方程:F(i) j<i&&F(j)&&[j+1,i]能否可以在字典中找到

​ 判断前i个字符是否在词典中也可以找到

返回:F(s.length)

import java.util.*;
public class Solution {
    public boolean wordBreak(String s, Set<String> dict) {
        if(s.length()==0){
            return false;
        }
        boolean[] canbreak=new boolean[s.length()+1];
        for(int i=1;i<=s.length();i++){
            //整体
            if(dict.contains(s.substring(0,i))){
                canbreak[i]=true;
                continue;
            }
            //F(i)   j<i&&F(j)&&[j+1,i]
            for(int j=i-1;j>0;j--){
                if(canbreak[j]&&dict.contains(s.substring(j,i))){
                    canbreak[i]=true;
                    break;
                }
            }
        }
        return canbreak[s.length()];
    }
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

力争做大牛的小王

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值