文章目录
使用 CASE 表达式实现数据透视表
使用 PIVOT 子句实现数据透视表
使用 MODEL 子句实现数据透视表
数据透视表(Pivot Table)是 Excel 中一个非常实用的分析功能,可以用于实现复杂的数据分类汇总和对比分析,是数据分析师和运营人员必备技能之一。今天我们来谈谈如何在 Oracle 数据库中实现数据透视表。
📝本文使用的示例数据可以点此下载。
使用 CASE 表达式实现数据透视表
数据透视表的本质就是按照行和列的不同组合进行数据分组,然后对结果进行汇总;因此,它和数据库中的分组(GROUP BY)和聚合函数(COUNT、SUM、AVG 等)的功能非常类似。
我们首先使用以下 GROUP BY 子句对销售数据进行分类汇总:
select coalesce(product, '【全部产品】') "产品",
coalesce(channel, '【所有渠道】') "渠道",
coalesce(to_char(saledate, 'YYYYMM'), '【所有月份】') "月份",
sum(amount) "销量"
from sales_data
group by rollup (product,channel,to_char(saledate, 'YYYYMM'));
以上语句按照产品、渠道以及月份进行汇总;rollup 选项用于生成不同层次的小计、合计以及总计;coalesce 函数用于将汇总行中的 NULL 值显示为相应的信息。查询返回的结果如下:
产品 |渠道 |月份 |销量 |
---------|---------|-----------|-------|
桔子 |京东 |201901 | 41289|
桔子 |京东 |201902 | 43913|
桔子 |京东 |201903 | 49803|
桔子 |京东 |201904 | 49256|
桔子 |京东 |201905 | 64889|
桔子 |京东 |201906 | 62649|
桔子 |京东 |【所有月份】| 311799|
桔子 |店面 |201901 | 41306|
桔子 |店面 |201902 | 37906|
桔子 |店面 |201903 | 48866|
桔子 |店面 |201904 | 48673|
桔子 |店面 |201905 | 58998|
桔子 |店面 |201906 | 58931|
桔子 |店面 |【所有月份】| 294680|
桔子 |淘宝 |201901 | 43488|
桔子 |淘宝 |201902 | 37598|
桔子 |淘宝 |201903 | 48621|
桔子 |淘宝 |201904 | 49919|
桔子 |淘宝 |201905 | 58530|
桔子 |淘宝 |201906 | 64626|
桔子 |淘宝 |【所有月份】| 302782|
桔子 |【所有渠道】|【所有月份】| 909261|
...
香蕉 |【所有渠道】|【所有月份】| 925369|
【全部产品】|【所有渠道】|【所有月份】|2771682|
实际上,我们已经得到了数据透视表的汇总结果,只不过需要将数据按照不同月份显示为不同的列;也就是需要将行转换为列,这个功能可以使用 CASE 表达式实现:
select coalesce(product, '【全部产品】') "产品", coalesce(channel, '【所有渠道】') "渠道",
sum(case to_char(saledate, 'YYYYMM') when '201901' then amount else 0 end) "一月",
sum(case to_char(saledate, 'YYYYMM') when '201902' then amount else 0 end) "二月",
sum(case to_char(saledate, 'YYYYMM') when '201903' then amount else 0 end) "三月",
sum(case to_char(saledate, 'YYYYMM') when '201904' then amount else 0 end) "四月",
sum(case to_char(saledate, 'YYYYMM') when '201905' then amount else 0 end) "五月",
sum(case to_char(saledate, 'YYYYMM') when '201906' then amount else 0 end) "六月",
sum(amount) "总计"
from sales_data
group by rollup (product, channel);
第一个 SUM 函数中的 CASE 表达式只汇总 201901 月份的销量,其他月份销量设置为 0;后面的 SUM 函数依次类推,得到了每个月的销量汇总和所有月份的总计。
产品 |渠道 |一月 |二月 |三月 |四月 |五月 |六月 |总计 |
----------|----------|------|------|------|------|------|------|-------|
桔子 |京东 | 41289| 43913| 49803| 49256| 64889| 62649| 311799|
桔子 |店面 | 41306| 37906| 48866| 48673| 58998| 58931| 294680|
桔子 |淘宝 | 43488| 37598| 48621| 49919| 58530| 64626| 302782|
桔子 |【所有渠道】|126083|119417|147290|147848|182417|186206| 909261|
苹果 |京东 | 38269| 40593| 56552| 56662| 64493| 62045| 318614|
苹果 |店面 | 43845| 40539| 44909| 55646| 56771| 64933| 306643|
苹果 |淘宝 | 42969| 43289| 48769| 58052| 58872| 59844| 311795|
苹果 |【所有渠道】|125083|124421|150230|170360|180136|186822| 937052|
香蕉 |京东 | 36879| 36981| 51748| 54801| 64936| 60688| 306033|
香蕉 |店面 | 41210| 39420| 50884| 52085| 60249| 67597| 311445|
香蕉 |淘宝 | 42468| 41955| 52780| 54971| 56504| 59213| 307891|
香蕉 |【所有渠道】|120557|118356|155412|161857|181689|187498| 925369|
【全部产品】|【所有渠道】|371723|362194|452932|480065|544242|560526|2771682|
📝Oracle 中的 decode 函数也可以实现类似 CASE 表达式的功能。
以上实现数据透视表的方法存在一定的局限性,假如还有 7 月份到 12 月份的销量需要统计,我们就需要修改查询语句增加这部分的处理。因此,Oracle 11g 引入了一个新的子句来实现自动的行转列:PIVOT。
使用 PIVOT 子句实现数据透视表
Oracle 中的 PIVOT 子句用于将行转换为列,基本语法如下:
SELECT col1, col2, ...
FROM tbl
PIVOT (
pivot_clause,
pivot_for_clause,
pivot_in_clause
);
PIVOT 子句包含 3 个部分:
pivot_clause,定义需要汇总的数据,也就是聚合函数。例如使用 SUM(amount) 汇总销量;
pivot_for_clause,指定需要从行转换成列的字段。例如使用 for saledate 将每个月的数据显示为一列;
pivot_in_clause,指定将 pivot_for_clause 字段中的哪些数据值转换为列。例如 in (‘201901’, ‘201902’) 表示只将 201901 和 201902 两个月份的数据转换为列。
对于上文中的示例,我们可以使用以下 PIVOT 子句:
with d(saledate, product, channel, amount) as (
select to_char(saledate, 'YYYYMM'),
product,
channel,
amount
from sales_data
)
select *
from d
pivot (
sum(amount)
for saledate
in ('201901', '201902', '201903', '201904', '201905', '201906')
)
order by product, channel;
其中,PIVOT 子句按照月份对销量进行汇总并且将月份转换为列显示,返回的结果如下:
PRODUCT |CHANNEL |'201901'|'201902'|'201903'|'201904'|'201905'|'201906'|
---------|--------|--------|--------|--------|--------|--------|--------|
桔子 |京东 | 41289| 43913| 49803| 49256| 64889| 62649|
桔子 |店面 | 41306| 37906| 48866| 48673| 58998| 58931|
桔子 |淘宝 | 43488| 37598| 48621| 49919| 58530| 64626|
苹果 |京东 | 38269| 40593| 56552| 56662| 64493| 62045|
苹果 |店面 | 43845| 40539| 44909| 55646| 56771| 64933|
苹果 |淘宝 | 42969| 43289| 48769| 58052| 58872| 59844|
香蕉 |京东 | 36879| 36981| 51748| 54801| 64936| 60688|
香蕉 |店面 | 41210| 39420| 50884| 52085| 60249| 67597|
香蕉 |淘宝 | 42468| 41955| 52780| 54971| 56504| 59213|
接下来我们需要增加一个总计行和总计列,为此可以先将 sales_data 数据进行分组统计然后再使用 PIVOT 子句进行转换:
with d(saledate, product, channel, amount) as (
select to_char(saledate, 'YYYYMM'),
product,
channel,
sum(amount)
from sales_data
group by rollup (to_char(saledate, 'YYYYMM'), product, channel)