树状数组原理以及模版

18 篇文章 0 订阅
16 篇文章 2 订阅

原码反码与补码

定义

  • 原码:最高位为符号位,正数为0,负数为1,剩余位表示数值的大小。
  • 反码:正数的反码与原码相同,负数的反码为原码除了符号位外全取反。
  • 补码:正数的补码与源码相同,负数的补码为其反码+1。

(特别的8位时,补码1000,0000表示-256)

举例

  • 对于整数1:(8位)
    原码:0000,0001
    反码:0000,0001
    补码:0000,0001
  • 对于整数-1:(8位)
    原码:1000,0001
    反码:1111,1110
    补码:1111,1111

整数在计算机中一般采用补码存储。
特别的,8位时,补码1000,0000表示-256。

lowbit运算

  • 定义
    lowbit(x) = x&(-x)
  • 解析:
    在了解了原码反码补码之后,可以发现,-x的反码实际上相当于x的反码取反,因此,把x变成-x相当于把x的每一位都取反,再加1(补码)。这等价于把x的最右边的1左边的每一位都取反
  • 意义
    经过上述分析之后,因此,x&(-x)相当于只保留x的最右边的1。显然,lowbit(x)也可以理解为能整除x的最大2的幂次。
  • 举例
    lowbit(0000,0101,0100) = 0000,0000,0000,0100

树状数组介绍

通过一个问题引入

P3374 【模板】树状数组 1
在这里插入图片描述
分析题目,如果不需要进行1操作(给某一个数字加上x),则可以通过开一个前缀和sum数组用O(n)的时间复杂度解决问题。现在依然想用O(n)解决这道题。因此需要用到树状数组。

树状数组的定义

  1. 树状数组仍然是一个数组,并且与sum数组类似,只不过sum[i]记录的是在i前(包括i)lowbit(i)个整数之和。如下图,来自《算法笔记》。数组A是原始数组,有16个元素,数组C是树状数组。简单概括:c[i]的覆盖长度是lowbit[i],c[i]等于它覆盖的A数组元素的和。比如:C[6]=A[5]+A[6]。

在这里插入图片描述
在这里插入图片描述
注意:树状数组的下标必须从1开始。

解决引入的问题

1. 设计一个函数getsum(x),返回前x个数组之和A[1]+A[2]+…+A[x]

对于c[x]根据定义,其覆盖长度为lowbit(x),因此:

C[x] = A[x-lowbit(x)+1]+...+A[x]

于是:
SUM(1,x) = A[1]+A[2]+…+A[x]
= A[1]+…+A[x-lowbit(x)] + A[x-lowbit(x)+1]+…+A[x]
= SUM(1,x-lowbit(x)) + C[x]
因此可以得到getsum(x)的代码

//返回数组c前x个整数之和
int getsum(int x){
	int sum = 0;
	for(int i = x ; i>0 ; i -= lowbit(i){
		sum += c[i];
	}
	return sum;
}

分析:for循环中是把i的最右边的1置0。因此循环次数为x中1的个数。因此,复杂度为O(logN)。

2. 设计一个函数update(x,v),实现将第x个数加上数字v。A[x]+=v;

要让A[X]加上v,就要使得树状数组C中所有覆盖A[x]的元素都加上v。观察上面的图,因此只要找到离C[X]最近且能覆盖C[X]的C[Y]即可,依次向上找。于是,对于A[5]加上v,则相当于C[5],C[6],C[8],C[16]都加上v即可。
为了找到最近的C[Y]覆盖C[X],即找到lowbit(y)>lowbit(x)。问题等价于:

找到一个最小的a,使得lowbit(x+a)>lowbit(x)。

由于lowbit(x)是取x最右边的1的位置,因此a最右边的1一定不在x的右边,而a又要尽可能的小,因此a取lowbit(x))
因此可以得到update(x,v)的代码:

//将第x个整数加上v
void update(int x,int v){
	for(int i = x; i<=N; i += lowbit(i)){
		c[i] += v;
	}
	return;
}

分析:for循环中不断定位i最右边的1,因此update函数的时间复杂度是O(logN)
求解:再回头看原来的题目,不过是调用update(先读入数值)。再getsum求区间和以及update更新数组。代码如下:

#include<cstdio>

#define lowbit(x) ((x)&(-x))
const int maxn = 500005;
int c[maxn];	//树状数组 
int n,m;//数组长度,与操作数 

void update(int x,int v){
	for(int i = x; i<=n; i += lowbit(i))
		c[i] += v;
	return;
}

int getsum(int x){
	int sum = 0;
	for(int i = x ; i>0 ; i -= lowbit(i))
		sum += c[i];
	return sum;
}

int main(){
	scanf("%d %d",&n,&m);
	int v;
	for(int i=1;i<=n;i++){
		scanf("%d",&v);
		update(i,v);
	}
	int o,x,y;
	for(int i=0;i<m;i++){
		scanf("%d %d %d",&o,&x,&y);
		if(o==1) update(x,y);
		else printf("%d\n",getsum(y)-getsum(x-1));
	}
	return 0;
}

单点查询,区间修改的树状数组(不容易理解版本)

例题

P3368 【模板】树状数组 2
在这里插入图片描述
如果树状数组按照之前的定义,显然想要修改整个区间的内容复杂度变高。要想位置O(logN)的复杂度,则需要对树状数组的定义稍微修改。
C[i]覆盖的区域不变,含义变为该区域的数字都被加了C[i]。

1. 设计一个函数getsum(x),返回A[x]。

根据数组c的定义,为了得到A[x],只需要找到所有覆盖A[x]的“矩形”c[i]再累加即可。easy!

int getsum(int x){
	int sum=0;
	for(int i = x; i<=N; i += lowbit(i)){
		sum += c[i];	
	} 
	return sum;
}

2. 设计一个函数update(x,v),前x个数(A[1]+…+A[x])都加上数字v。

同理,为了更新数据,从c[x]开始依次找到"左上角的小矩形"即可!参考单点修改的线段数组。
比如5-16内的数字加上v,则update(4,-(v-1))再调用update(16,v)即可

void update(int x,int v){
	for(int i = x; i>0; i -= lowbit(i)){
		c[i] += v;
	}
	return;
}

完整AC代码

#include<cstdio>

#define lowbit(x) ((x)&(-x)) 
const int maxn = 500005;
int c[maxn];
int n,m;

void update(int x,int v){
	for(int i = x; i>0; i -= lowbit(i)){
		c[i] += v;
	}
	return;
}

int getsum(int x){
	int sum=0;
	for(int i = x; i<=n; i += lowbit(i)){
		sum += c[i];	
	} 
	return sum;
}

int main(){
	scanf("%d %d",&n,&m);
	int x;
	for(int i=1;i<=n;i++){
		scanf("%d",&x);
		update(i-1,-x);
		update(i,x);
	}
	int o,y,k;
	for(int j=1;j<=m;j++){
		scanf("%d",&o);
		if(o==1){	//添加 
			scanf("%d %d %d",&x,&y,&k);
			update(y,k);
			update(x-1,-k);
		}else{	//查询 
			scanf("%d",&x);
			printf("%d\n",getsum(x));
		}
	}
	return 0;
}

单点查询,区间修改的树状数组(容易理解版本)

用差分数组t代替原来数组a,那么修改数组a的区间[l,r]变为使得t[l] += value; t[r+1] - value;,点查询index变为 a[index] = t[0] + t[1] + ... + t[index]在这里插入代码片

代码

#include <iostream>
using namespace std;

#define lowbit(x) ((x) & (-x))

const int maxn = 500005;

int n, m;

int t[maxn];

void update(int loc, int x) {
    for (int i = loc; i <= n; i += lowbit(i)) {
        t[i] += x;
    }
    return;
}

int query(int loc) {
    int sum;
    for (int i = loc; i > 0; i -= lowbit(i)) {
        sum += t[i];
    }
    return sum;
}

int main() {
    cin >> n >> m;
    for (int i = 0; i <= n; i++) {
        t[i] = 0;
    }
    int last_value = 0;
    int value;
    for (int i = 1; i <= n; i++) {
        cin >> value;
        int t = value - last_value;
        update(i, t);
        last_value = value;
    }
    for (int i = 0; i < m; i++) {
        int f;
        cin >> f;
        if (f == 1) {
            int x, y, k;
            cin >> x >> y >> k;
            update(x, k);
            if (y < n) {
                update(y + 1, -k);
            }
        } else {
            int x;
            cin >> x;
            cout << (query(x) - query(x - 1)) << endl;
        }
    }
    return 0;
}

区间查询,区间修改的树状数组

例题【模板】线段树 1,需要一些数学推导,参考博客树状数组3区间查询区间修改

代码

#include <iostream>
using namespace std;

#define lowbit(x) ((x) & (-x))

const int maxn = 100005;
int n, m;

long long tr1[maxn], tr2[maxn];

void update(long long *tr, int loc, int x) {
    for (int i = loc; i <= n; i += lowbit(i)) {
        tr[i] += x;
    }
    return;
}

long long query(long long *tr, int loc) {
    long long sum = 0;
    for (int i = loc; i > 0; i -= lowbit(i)) {
        sum += tr[i];
    }
    return sum;
}

int main() {
    cin >> n >> m;
    for (int i = 0; i <= n; i++) {
        tr1[i] = tr2[i] = 0;
    }
    int last_value = 0;
    int value;
    for (int i = 1; i <= n; i++) {
        cin >> value;
        update(tr1, i, value - last_value);
        update(tr2, i, i * (value - last_value));
        // cout << "value - last_value:" << value - last_value << endl;
        last_value = value;
    }
    // for (int i = 1; i <= n; i++) {
    //     cout << t[i] << ", ";
    // }
    // cout << endl;
    for (int i = 0; i < m; i++) {
        int f;
        cin >> f;
        if (f == 1) {
            int x, y, k;
            cin >> x >> y >> k;
            update(tr1, x, k);
            update(tr1, y + 1, -k);
            update(tr2, x, k * x);
            update(tr2, y + 1, -(y + 1) * k);
        } else {
            int x;
            int y;
            cin >> x >> y;
            long long tr1_sum = (y + 1) * query(tr1, y) - (x - 1 + 1) * query(tr1, x - 1);
            long long tr2_sum = query(tr2, y) - query(tr2, x - 1);
            cout << tr1_sum - tr2_sum << endl;
        }
    }
    return 0;
}

总结

树状数组用来解决区间修改,单点查询区间查询,和单点修改的问题。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值